
LPG Compressors

Sales Catalog

Solutions beyond products...

Table of Contents

General Information	
What is a Corken LPG/NH ₃ Compressor	3
Features and Benefits	
Markets Served	
Liquid Transfer/Vapor Recovery	
Features, Operating & Materials Specifications	
Vertical Single-Acting Compressors (Models 91–691)	8
Vertical Double-Acting Compressors (Model D891)	
Horizontal Compressors (Models HG601AA–HG601EE)	
Compressor Selection	
How to Select a Vertical Compressor	14
Sample Liquid Transfer/Vapor Recovery (LTVR) Worksheet	
LPG, Butane and NH ₃ Quick Selection Charts	
Model Number Identification Codes	
Vertical Single-Acting Compressors (Models 91–691)	23
Vertical Double-Acting Compressors (Model D891)	24
Horizontal Compressors (Models HG601AA–HG601EE)	
Outline Dimensions	
Vertical Single-Acting Compressors (Models 91–691)	26
Vertical Double-Acting Compressors (Model D891)	
Horizontal Compressors (Models HG601AA–HG601EE)	

LPG Compressors

General Information

What is a Corken LPG Compressor?

Corken LPG gas compressors are part of the reciprocating compressor family. Reciprocating compressors pull vapor into a cylinder through a suction valve by drawing back a piston to create a low pressure area in the cylinder. They pressurize the gas by pushing the piston back up into the cylinder to squeeze the gas out through the discharge valve. Figure 1, page 4 shows a cutaway view of an LPG gas compressor.

A compressor *valve* consists of four parts: a seat, bumper, disc and spring. The spring rests against a bumper and pushes the disc against the seat. The disc seals off the flow passage through the seat. If more pressure builds up on the seat side than the bumper side, the disc will be forced away from the seat and gas will flow through the valve, see figure 2, page 6. The suction valves are also equipped with a small ball and spring relief valve which is designed to relieve any condensation that takes place within the compressor *cylinder*. The liquid relief valve is not intended to relieve liquid that enters the cylinder through the suction valve. This liquid would be handled by a liquid trap.

In order for compression to take place, the *piston* must be sealed against the cylinder wall. This seal is made with several *piston rings*. Since LPG compressors must not be containinated by lubricating oils, the piston

LPG/NH, Compressors

Reciprocating

Piston type

Single packed

High reliability

Easy maintenance

Vertical and horizontal machines

Single and double acting compression

Bulk transfer

Liquid transfer vapor recovery

Flow range: 4(6.8) - 414 cfm $(703.5 \text{ m}^3/\text{hr})$

Driver range: 7.5 (5.6) - 75 hp (55 kW)

Connections: NPT or 300# ANSI

ring must be made of a self lubricating material. Corken standard piston rings are made of glass-filled Teflon®¹. Gas pressure in the cylinder is used to press the piston rings against the cylinder wall, see figure 3, page 6. *Ring expanders* are used to push the rings towards the cylinder wall so high pressure gas may flow behind the rings.

Piston rings form a good dynamic seal but they are not tight enough to seal all the pressure and gas inside the cylinder; an additional seal is required to do this. This seal is the *piston rod packing*. The piston rod packing is a seal that is located at the bottom of the cylinder. It is composed of several parts, the most important being the self-lubricating Teflon®¹ *V-rings* that tightly seal against the piston rod. A spring is included in the packing assembly which allows a slight amount of "float" to reduce friction. The rod packing also seals oil in the crancase out of the compression chamber to prevent contamination of the gas.

Corken standard LPG and NH₃ comrpessors contain one set of piston rod packing per rod. The compressor line is sometimes referred to as single packed or plain style. One set of packing controls leakage and oil contamination of the vapor to a satisfactory level for most commercial LPG/NH₃ applications. When leakage and contamination must be held to an absolute minimum, two or three packings sets separated by a distance piece may be utilized. See our I-Series Industrial Compressor sales brochure (Item I100) for more information on these double (D-style) and tripple (T-style) packed gas compressors.

The *crankcase*, *connecting rod* and *crosshead*, convert rotary motion from the motor to reciprocating motion at the pistion. All Corken compressors, except the model 91, use an *oil pump* to pressure lubricate the bearings and wrist pins to assure long service life. The oil pump is a gear type that may be run in either direction; for this reason Corken compressors may be run in either direction.

¹Teflon is a registered trademark of the DuPont company.

Threaded and ANSI flanges:

Compressors are available in either threaded NPT, ANSI, or DIN flanged connections.

High-efficiency valves:

Corken valves offer quiet operation and high durability in oil-free gas applications. Specially designed suction valves which tolerate small amounts of condensate are available.

O-ring head gaskets:

Easy to install O-ring head gaskets providing highly reliable seals.

Ductile-iron construction:

All cylinders and heads are ductile iron for maximum thermal shock endurance.

Self-lubricating Teflon®1 piston rings:

Corken provides a variety of state-ofthe-art piston ring designs to provide the most cost-effective operation of compressors for non-lube service. The step-cut design provides higher efficiencies during the entire life of the piston ring.

Positively locked piston:

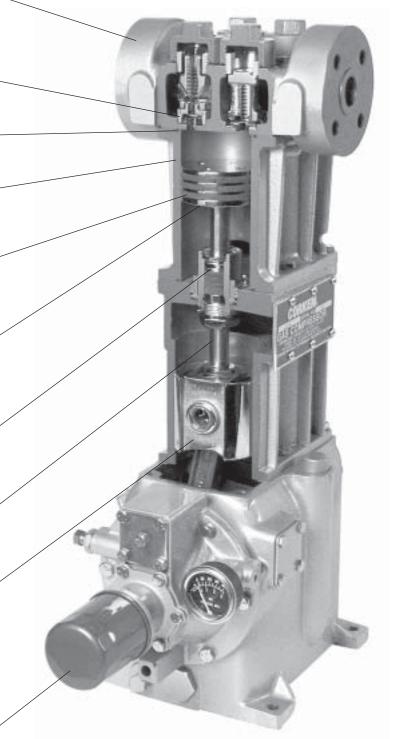
Simple piston design allows end clearance to be precisely set to provide maximum efficiency and long life.

Self-lubricating piston rod seals:

Seals constructed of Teflon® incorporating special fillers to ensure no oil carry over and maximize leakage control. Spring loaded seal design self adjusts to compensate for normal wear.

Nitride-coated piston rods:

Impregnated nitride coating provides superior corrosion and wear resistance.


Cast-iron crosshead:

Durable cast-iron crossheads provide superior resistance to corrosion and galling.

Pressure-lubricated crankcase with filter:

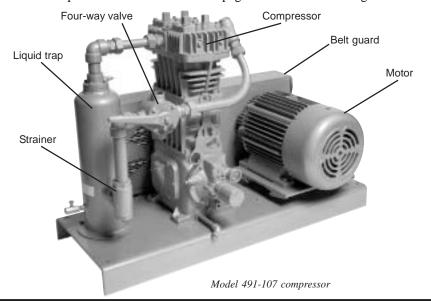
Self-reversing oil pump ensures proper lubrication regardless of directional rotation to main and connecting rod bearings. Standard 10-micron filter ensures long-lasting bearing life (not available on Model 91).

Model F291 Compressor

Markets Served by Corken LPG Compressors

Corken LPG gas compressors are designed for use in liquid tranfer, vapor recovery, scavenger applications, tank evaluations and portable applications for the LPG and agricultural ammonia industries. Whether it is gas recovery from cylinders or barge unloading, Corken has a compressor for your application. Our compressors are also used in many industrial applications with a few modifications to the compressor packing arangement. Contact the factory for information on moving gases other than LPG and NH₃.

Liquid Transfer/Vapor Recovery


The most flexible method for moving liquid propane, butane and ammonia is with a compressor, a device designed to handle vapor and vapor only. How is this done? Any fluid, vapor or gas, may be moved by creating a different pressure between two points. A compressor may be used to create a pressure difference between the vapor spaces of two tanks. If the liquid spaces of the two tanks are connected, the pressure difference exerted by the vapor will cause the liquid to begin flowing from the higher pressure tank to the lower pressure tank (see figure 4, page 7).

Changes in internal pressure of a propane tank will result in condensation and boiling. Condensation and boiling will tend to negate the pressure difference created by the compressor. Liquid transfer using a compressor works because vapor may be moved more quickly that it boils off and condenses. The flow rate induced will equal the volume of gas discharged from the compressor if a large enough compressor is chosen to make the effect of boiling and condensation negligible. The pressure increase through the compressor will equal the pressure decrease due to friction in the liquid piping. Years of experience have shown that piping designed to create a pressure drop of 30 psi or less works best. Higher pressure drops result in more condensation and boiling and reduce the flow rates due to reduced discharge volume.

Compressors may also be used to evacuate tanks. High pressure propane vapor in a large tank has substantial economic value that makes it worth recovering. Tanks that must be unloaded through a dip tube (such as most railcars) leave a small liquid heel in the tank when liquid transfer is complete. A compressor can be used to reduce the pressure in the tank to boil the heel into recoverable vapor. The vapor recondenses when it is fed into the liquid section of another propane tank (see figure 5, page 7).

Corken LPG transfer compressors are the standard of the industry. Models 91, 291 and 491 are popular for truck and small railcar unloading. The model 691 is suitable for unloading large railcars. Corken horizontal compressors and the vertical double-acting D891 compressor are used for unloading barges or several railcars at a time.

Refer to the "Compressor Selection" section on page 14 of this sales catalog to determine the correct compressor for your application.

Primary Markets

LPG bulk transfer

Tank evacuation

Vapor recovery

Barge unloading

Tank/railcar unloading

Agricultural ammonia

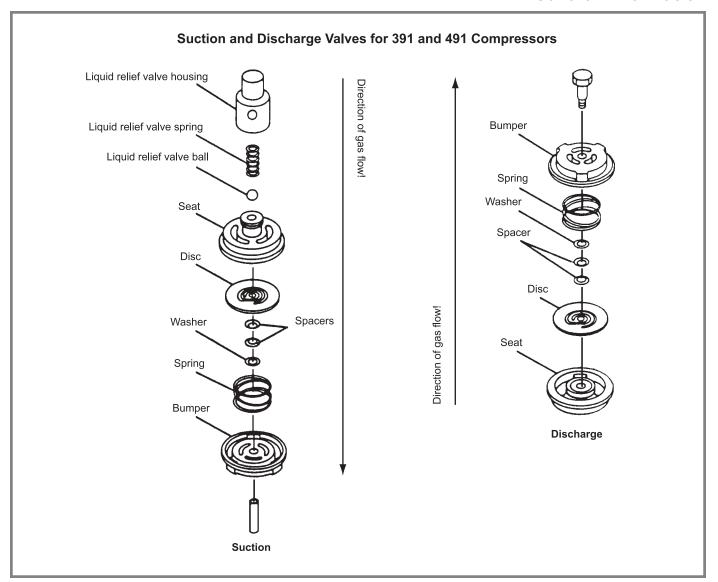


Figure 2

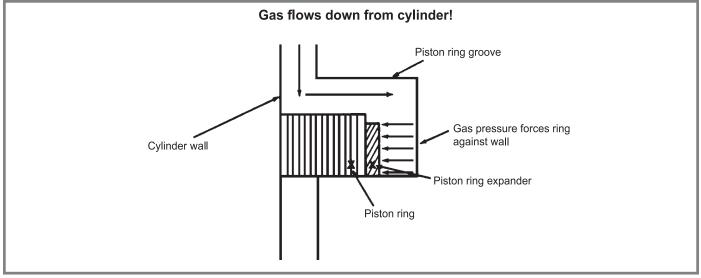


Figure 3

Liquid Transfer

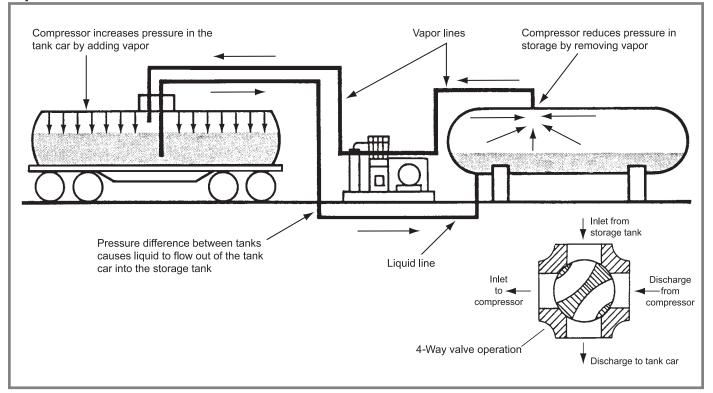


Figure 4

Vapor Recovery

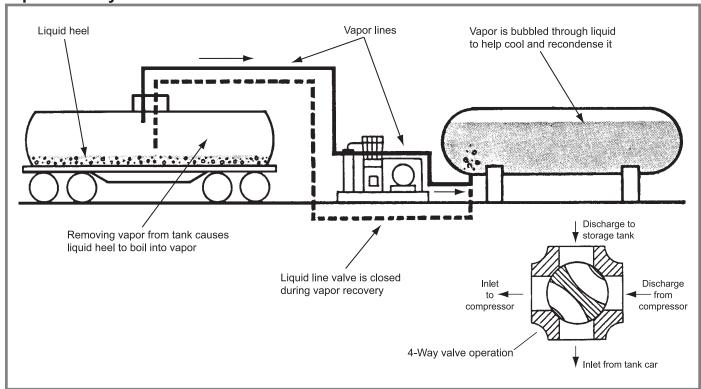


Figure 5

Vertical Single-Acting Compressor Features & Specifications

Models 91-691

Equipment Type & Options

Single-acting, vertical, reciprocating piston type vapor compressor Single packed rod (D- & T-styles optional) NPT or 300# ANSI connections

Applications

Bulk transfer Vapor recovery Tank evacuation Gas scavenger

Features & Benefits

Self-lubricating piston rings:	Non-lubricated operation to minimize oil in gas
NPT or 300# ANSI connections:	Versatility for your application
Multiple mounting configurations:	Versatility for your application
High efficiency valves:	Quiet, reliable operation
Reversible oil pump:	Allows operation in either direction
Simplified top down design:	Routine maintenance is minimally invasive

Operating Specifications

Model	91	291	491	691
Specifications				
Bore of cylinder inches (mm)	3.0 (76.2)	3.0 (76.2)	4.0 (101.6)	4.5 (114.3)
Stroke inches (mm)	2.5 (63.5)	2.5 (63.5)	3.0 (76.2)	4.0 (101.6)
Piston displacement cfm (m³/hr)				
minimum @ 400 RPM	4.0 (6.8)	8.0 (13.06)	17.2 (29.2)	29.2 (49.6)
maximum @ 825 RPM	8.3 (14.1)	16.5 (28.0)	35.5 (60.3)	60.2 (102.3)
Maximum working pressure psig (bar g)	350 (24.1)			
Maximum brake horesepower (kW)	7.5 (5.6)	15 (11)	15 (11)	35 (26.1)
Maximum rod load lb (kg)	3,600 (1,632.9)	3,600 (1,632.9)	4,000 (1,814.4)	5,500 (2,494.8)
Maximum outlet temperature °F (°C)	350 (177)			
Bare unit weight lb (kg)	115 (52.2)	160 (72.6)	260 (117.9)	625 (283.5)
Maximum flow—propane gpm (m³/hr)	50 (11.4)	101 (22.9)	215 (48.8)	361 (82.0)

Vertical Single-Acting Compressor Features & Specifications

Models 91–691 Material Specifications

Part	Model	Standard Material	Model	Optional Material
Head, cylinder	All	Ductile iron ASTM A536		None
Crosshead guide				
Crankcase, flywheel	All	Gray iron ASTM A48, Class 30		None
Bearing carrier				
Flange	691	Ductile iron ASTM A536	691	Steel weld flange
	91, 291	17-4 PH stainless steel		
Valve seat & bumper	491	Ductile iron ASTM A536		None
	691	17-4 PH stainless steel		
	91, 291	410 stainless steel		
Valve plate	491	17-7 PH stainless steel		None
	691	Steel		
Valve spring	91, 291, 691	17-7 PH stainless steel		None
valve spring	491	Inconel		None
Valve gaskets	All	Soft aluminum	All	Iron-lead
Piston	All	Gray iron ASTM A48, Class 30		none
Piston rod	All	C1050 steel Nitrotec coated	All	Chrome oxide
Crosshead	All	Gray iron ASTM 48, Class 30		None
Piston rings	All	Teflon®1, glass and moly filled	All	Alloy 50
Ring expanders	All	302 stainless steel		None
Head gasket	All	O-ring, Buna-N	All	Teflon®1, Viton®1, Neoprene®1
Adapter plate				
Packing cartridge	All	Ductile iron ASTM A536		None
Connecting rod				
Packing rings	All	Teflon®1, glass and moly filled	All	Alloy 50
Crankshaft	All	Ductile iron ASTM A536		None
Con. rod bearing	All	Bimetal D-2 Babbit		None
Wrist pin	All	C1018 steel		None
Wrist pin busing	All	Bronze SAE 660		None
Main bearing	All	Tapered roller		None
Inspection plate	All	Aluminum		None
O-rings	All	Buna-N	All	Teflon®1, Viton®1, Neoprene®1
Retainer rings	All	Steel		None
Misc. gaskets	All	Coroprene		None

¹ Teflon®, Viton® and Neoprene® are registered trademarks of the DuPont company.

Vertical Double-Acting Compressor Features & Specifications

Model D891

Equipment Type & Options

Double-acting, vertical, reciprocating piston type vapor compressor Double packed rod Slip-on weld connections

Applications

Bulk transfer
Truck, tank, railcar, barge unloading
LTVR and scavenger applications
Emergency evacuation

Features & Benefits

Self-lubricating piston rings:	Non-lubricated operation to minimize oil in gas
Multiple materials and configurations:	Versatility for your application
Multiple mounting configurations:	Versatility for your application
High efficiency valves:	Quiet, reliable operation
Reversible oil pump:	Allows operation in either direction
Simplified top down design:	Routine maintenance is minimally invasive

Operating Specifications

Bore of cylinder inches (mm)	4.5 (113)
Stroke inches (mm)	4.0 (101.6)
Piston displacement cfm (m³/hr)	
minimum @ 400 RPM	56.6 (96.2)
maximum @ 825 RPM	113.2 (192.0)
Maximum working pressure psig (bar g)	465 (32.1)
Maximum brake horesepower (kW)	45 (34)
Maximum rod load lb (kg)	7,000 (3,175.2)
Maximum outlet temperature °F (°C)	350 (177)
Bare unit weight lb (kg)	855 (387.8)
Maximum flow—propane gpm (m³/hr)	694 (157.6)

Vertical Double-Acting Compressor Features & Specifications

Model D891 Material Specifications

Part	Standard Material	Optional Material
Head, cylinder	Ductile iron ASTM A536	
Distance piece		
Crosshead guide	Gray iron ASTM A48, Class 30	
Crankcase, flywheel		
Bearing carrier		
Flange	ASTM A36 carbon steel	
Valve seat, bumper	17-7 PH stainless steel	
Valve plate	410 stainless steel	
Valve spring	17-7 PH stainless steel	
Valve gaskets	Soft aluminum	Copper, iron-lead
Piston	Ductile iron ASTM A536	
Piston rod	C1050 steel, Nitrotec	
Crosshead	Gray iron ASTM A48, Class 30	
Piston rings	Teflon®1, glass and moly filled	Alloy 50
Piston ring expanders	302 stainless steel	
Head gasket	O-ring, Buna-N	Teflon®1, Viton®1, Neoprene®1
Adapter plate		
Packing cartridge	Ductile iron ASTM A536	
Connecting rod		
Packing rings	Teflon®1, glass and moly filled	Alloy 50
Crankshaft	Ductile iron ASTM A536	
Connecting rod bearing	Bimetal D-2 Babbit	
Wrist pin	C1018 Steel	
Wrist pin bushing	Bronze SAE 660	
Main bearing	Tapered roller	
Inspection plate	Aluminum	
O-rings	Buna-N	Teflon®1, Viton®1, Neoprene®1
Retainer rings	Steel	
Miscellaneous gaskets	Coroprene	

¹Teflon®, Viton® and Neoprene® are registered trademarks of the DuPont company.

Horizontal Compressor Features & Specifications

All Models HG601

Equipment Type & Options

Single or double acting
Horizontal reciprocating piston compressor
Pressure and oil wiper packing
Slip-on weld connections

Applications

Bulk transfer Truck, tank, barge, railcar unloading Liquid Transfer/Vapor Recovery (LTVR)

Features & Benefits

Modular design:	Single or double acting
Multiple materials and configurations:	Versatility for your application
Multiple mounting configurations:	Versatility for your application
High efficiency valves:	Quiet, reliable operation
Lubricated and non-lube designs:	Versatility for your application

Operating Specifications

Double Cylinder Models (single or double acting)

Model	HG601AA	HG601BB	HG601CC	HG601DD	HG601EE
Specifications					
Bore of cylinders inches (mm)	8 (203.2)	6 (152.4)	5 (127)	4 (101.6)	3.25 (82.6)
Stroke inches (mm)			3.0 (76.2)		
Piston displacement cfm (m³/hr)					
minimum @ 100 RPM	34.8 (58.6)	19.2 (32.7)	13.2 (22.4)	8.3 (14.1)	5.3 (9.1)
maximum @ 1,200 RPM	414.0 (703.5)	231.0 (392.5)	158.4 (268.8)	99.6 (169.2)	64.0 (108.7)
Maximum working pressure psig (bar g)	315.0 (21.7)	365.0 (25.2)	750 (51.7)	1,015.0 (7.0)	1,215.0 (83.8)
Maximum brake horesepower (kW)	75 (55)				
Maximum rod load lb (kg)	7,000 (3,175.2)				
Maximum outlet temperature °F (°C)	350 (176.7)				
Approximate weight lb (kg)	1,070 (485.3) 910(412.8) 890 (403.7) 870 (394.6) 845 (3		845 (383.3)		
Speed range	400-1,200 RPM				

Horizontal Compressor Features & Specifications

All Models HG601 Material Specifications

	•		
Part	Model	Standard Material	Optional Material
Crankcase	All		
Adapters	All	Ductile Iron ASTM A538	
Cylinders	All		
Cylinder heads	All	Grade 65-45-12	
Valve caps	All		
Crankcase bearing carrier	All	Gray iron ASTM A48, Class 30	
Flanges	All	Steel slip-on welded	
Valve guard	All	Stainless steel	
Valve seat	4", 5"	Steel 4140	
vaive seat	3-1/4", 6", 8"	Stainless steel	
Valve plates & springs	All	Stainless steel	
Valve gaskets	3-1/4", 4", 5"	Steel	
valve gaskets	6", 8"	Soft aluminum	Copper, iron-lead
Pistons	3-1/4", 4", 5"	Steel	Ductile Iron, A536 Grade 65-45-12
1510115	6", 8"	Aluminum, A356-T6	
Piston rod	All	C-1050 Steel Nitrotec	
Crosshead	All	Gray iron ASTM A48, Class 30	
Connecting rod &	All	Ductile iron ASTM A536	
packing cartridge	All All	grade 65-45-12	
Piston rings	All	Teflon®1, glass & moly filled	
Rider rings	All	Teflon®1, glass & moly filled	
Packing, segmented	4", 5"	Teflon®1, carbon filled	
r acking, segmented	3-1/4", 6", 8"	Teflon®1, carbon filled	
Segmented wiper rings	4", 5"	Brass	
Segmented wiper nings	3-1/4", 6", 8"	Teflon®1, carbon filled	
Connecting rod bearings	All	Bimetal D-2 Babbit	
Crankshaft	All	Ductile iron ASTM A536	
Cianksnan	All	grade 80-55-06	
Wrist pin	All	C-1018 steel	
Wrist pin bushing	All	Bronze SAE 660	
Main bearings	All	Tapered roller	
Inspection plate	All	Carbon steel	
O-rings	All	Buna-N	Teflon®¹, Viton®¹, Neoprene®¹
Retainer rings	All	Carbon steel	
Lubricator tubing	Lube models	Steel	
1	1		

¹Teflon®, Viton® and Neoprene® are registered trademarks of the DuPont company.

LPG Compressors

Compressor Selection

How to Select a Vertival Compressor?

Compressor size and speed selection is a highly inexact process with complex interactions of a number of different variables such as ambient temperature, pressure drops in liquid lines and vapor suction lines, solar radiation, precipitation, size of the tank and the surface area of the tank and piping. With this many variables, the exact performance of the compressor cannot be precisely calculated. Corken's compressor selection tables are a quick and easy method to make an approximate selection for butane, propane and ammonia compressors. These charts show flows for different Corken compressors run at common speeds with a maximum tank temperature of 100°F and 80°F with a 30 psi pressure drop in the piping. In only the most extreme temperature conditions will tank temperature exceed 100°F. A large tank heats up and cools down much more slowly than the surrounding atmosphere. Although temperatures may frequently exceed 100°F on hot summer afternoons, tank temperatures will seldom rise this high. Therefore, the horsepower values shown in the charts are very conservative and may be lowered for milder climates. Your local Corken distributor is usually the best source of information for ideal motor sizes for the climate in your region. Corken can also supply a computer analysis showing the horsepower required for different tank temperatures.

If it is important that unloading operations be completed in a certain amount of time, a more complex analysis is required. When such an analysis is needed, or if a product other than butane, propane or ammonia is used, contact Corken so an application engineer (AE) may thoroughly review the situation. The application engineer will provide you with a printout of the analysis as shown in figure 6, page 16. This analysis is divided into three parts that clearly demonstrate how temperature affects flow rates and vapor recovery times.

The highest liquid flow rates are achieved on hot days, see figure 7, page 17. This is because the pressure drop in the piping remains relatively constant as the temperature changes, while the vapor pressure swings over a wide range. The vapor pressure of propane is 38 psia at 0°F and 215 psia at 110°F. The discharge pressure, P2 is the product vapor pressure plus the system differential pressure. In figure 6, page 16 the 30 psi pressure drop is added to the vapor pressure to yield the discharge pressure shown in column P2. You will notice that the compression ratio (the absolute inlet vapor pressure divided by the absolute discharge pressure) rises as the temperature falls. As the compression ratio rises with falling temperature, the gas passing through the compressor is reduced, the amount of liquid displaced by the vapor is also reduced.

When the liquid in a tank is unloaded through a dip tube, liquid transfer will cease when the liquid level falls beneath the bottom of this tube. The residual puddle is called a "liquid heel". By reversing the direction of vapor flow and blocking the liquid line as shown in the section on liquid transfer/vapor recovery (LTVR), liquid may be recovered. By withdrawing vapor from the tank, the liquid will begin to boil into vapor to replace that which is being removed. This process is called "boil-off". Boil-off is completed most rapidly on hot days, see figure 8, page 17. The high vapor pressure on hot days gives the gas a higher density than on cold days. It takes a larger quantity of liquid to replace a cubic foot of high density vapor than low density vapor.

When boil-off is completed a substantial amount of propane is left in the tank in a vapor state. This vapor is equivalent to a substantial amount of liquid propane of significant economic value. As a rule of thumb in the LPG industry, propane tank cars should be evacuated to 40 psia. Alternately, a final evacuation pressure of 25 to 30% of original tank car pressure is a good value for most any liquefied gas. Evacuation pressures lower than this may not pay for the energy required to run the compressor and generally should not be considered unless factors other than economics are being considered. The vapor recovery procedure requires the most time on hot days because the high initial vapor pressure requires more time to reduce, see figure 9, page 18. The recovered vapor should be bubbled up through the liquid section of the receiver tank to recondense the vapor to liquid. The maximum horsepower requirement for the compressor occurs when the tank has been evacuated to approximately 50% of full vapor pressure, see figure 10, page 18. Larger motors are required to do vapor recovery in hot climates.

Definitions of Column Headings for Liquefied Gas Transfer Compressor Worksheet on Page 16

Liquid Transfer and Boil-Off Phase

T1	Inlet temperature of gas, degrees Fahrenheit
VP	Vapor pressure, psia
P2	Discharge pressure, psia (vapor pressure + liquid line pressure drop)
T2	Discharge temperature of gas, degrees Fahrenheit
CR	Compression ratio (P2/P1)
VE	Volumetric efficiency
Gpm	Induced liquid flow rate, gallons per minute
Acfm (in)	Volume flow rate of gas at inlet, actual cubic feet per minute
Acfm (out)	Volume flow rate of gas at discharge, actual cubic feet per minute
Bhp	Brake horsepower
Time	Time to empty tank of liquid, minutes
Lb/hr	Mass flow rate of liquid, pounds per hour
Z (in)	Compressibility factor at inlet
Z (out)	Compressibility factor at discharge

Vapor Recovery Phase

VE (final) Volumetric efficiency at end of vapor recovery phase (inlet pressure = desired evacuation pressure or where VE = 0, whichever comes first) Acfm (initial) Volume flow rate at beginning of vapor recovery phase (inlet pressure = vapor pressure Acfm (final) Volume flow rate at end of vapor recovery phase (inlet pressure = desired evacuation pressure or where VE = 0, whichever comes first) Z (initial) Initial compressibility Bhp Highest brake horsepower that occurs during vapor recovery P1 at VE = 0 Evacuation suction pressure when VE has fallen to 0 due to increase in compression P1 at max bhp Inlet pressure to compressor at the highest horsepower condition Time Time to complete evacuation of tank to desired evacuation pressure or to evacuate ta point where VE falls to 0, whichever comes first-in minutes Equivalent Liquid A) Actual Equivalent amount of liquid that would be formed by converting vapor in the tank to liquid A) Actual Equivalent amount of liquid of all the vapor in the tank Equivalent amount of liquid of vapor removed if tank is evacuated to desired pressure or until VE = 0, whichever comes first C) Claimable Equivalent amount of liquid of vapor removed if tank is evacuated until VE = 0		
P2 Discharge pressure, psia (vapor pressure + vapor line pressure drop) T2 Discharge temperature of gas, degrees Fahrenheit VE (initial) Volumetric efficiency at beginning of vapor recovery phase (inlet pressure = vapor pre VE (final) Volumetric efficiency at end of vapor recovery phase (inlet pressure = desired evacual pressure or where VE = 0, whichever comes first) Acfm (initial) Volume flow rate at beginning of vapor recovery phase (inlet pressure = vapor pressure (final) Volume flow rate at end of vapor recovery phase (inlet pressure = vapor pressure or where VE = 0, whichever comes first) Z (initial) Initial compressibility Z (final) Final compressibility Bhp Highest brake horsepower that occurs during vapor recovery P1 at VE = 0 Evacuation suction pressure when VE has fallen to 0 due to increase in compression P1 at max bhp Inlet pressure to compressor at the highest horsepower condition Time Time to complete evacuation of tank to desired evacuation pressure or to evacuate ta point where VE falls to 0, whichever comes first-in minutes Equivalent Liquid The amount of liquid that would be formed by converting vapor in the tank to liquid A) Actual Equivalent amount of liquid of vapor removed if tank is evacuated to desired evacuation pressure or until VE = 0, whichever comes first C) Claimable Equivalent amount of liquid of vapor removed if tank is evacuated until VE = 0	T1	Inlet temperature of gas, degrees Fahrenheit
T2 Discharge temperature of gas, degrees Fahrenheit VE (initial) Volumetric efficiency at beginning of vapor recovery phase (inlet pressure = vapor pre VE (final) Volumetric efficiency at end of vapor recovery phase (inlet pressure = desired evacuar pressure or where VE = 0, whichever comes first) Acfm (initial) Volume flow rate at beginning of vapor recovery phase (inlet pressure = vapor pressur Acfm (final) Volume flow rate at end of vapor recovery phase (inlet pressure = desired evacuation pressure or where VE = 0, whichever comes first) Z (initial) Initial compressibility Z (final) Final compressibility Bhp Highest brake horsepower that occurs during vapor recovery P1 at VE = 0 Evacuation suction pressure when VE has fallen to 0 due to increase in compression P1 at max bhp Inlet pressure to compressor at the highest horsepower condition Time Time to complete evacuation of tank to desired evacuation pressure or to evacuate ta point where VE falls to 0, whichever comes first-in minutes Equivalent Liquid The amount of liquid that would be formed by converting vapor in the tank to liquid A) Actual Equivalent amount of liquid of vapor removed if tank is evacuated to desired evacuation pressure or until VE = 0, whichever comes first C) Claimable Equivalent amount of liquid of vapor removed if tank is evacuated until VE = 0	VP	Vapor pressure, psia
VE (initial) Volumetric efficiency at beginning of vapor recovery phase (inlet pressure = vapor prevate (final) Volumetric efficiency at end of vapor recovery phase (inlet pressure = desired evacual pressure or where VE = 0, whichever comes first) Acfm (initial) Volume flow rate at beginning of vapor recovery phase (inlet pressure = vapor pressure of vapor recovery phase (inlet pressure = desired evacuation pressure or where VE = 0, whichever comes first) Z (initial) Initial compressibility Bhp Highest brake horsepower that occurs during vapor recovery P1 at VE = 0 Evacuation suction pressure when VE has fallen to 0 due to increase in compression P1 at max bhp Inlet pressure to compressor at the highest horsepower condition Time Time to complete evacuation of tank to desired evacuation pressure or to evacuate ta point where VE falls to 0, whichever comes first-in minutes Equivalent Liquid A) Actual Equivalent amount of liquid that would be formed by converting vapor in the tank to liquid A) Actual Equivalent amount of liquid of vapor removed if tank is evacuated to desired evacuation pressure or until VE = 0, whichever comes first C) Claimable Equivalent amount of liquid of vapor removed if tank is evacuated until VE = 0	P2	Discharge pressure, psia (vapor pressure + vapor line pressure drop)
VE (final) Volumetric efficiency at end of vapor recovery phase (inlet pressure = desired evacuation pressure or where VE = 0, whichever comes first) Acfm (initial) Volume flow rate at beginning of vapor recovery phase (inlet pressure = vapor pressure Acfm (final) Volume flow rate at end of vapor recovery phase (inlet pressure = desired evacuation pressure or where VE = 0, whichever comes first) Z (initial) Initial compressibility Z (final) Final compressibility Bhp Highest brake horsepower that occurs during vapor recovery P1 at VE = 0 Evacuation suction pressure when VE has fallen to 0 due to increase in compression Inlet pressure to compressor at the highest horsepower condition Time Time to complete evacuation of tank to desired evacuation pressure or to evacuate ta point where VE falls to 0, whichever comes first-in minutes Equivalent Liquid A) Actual Equivalent amount of liquid that would be formed by converting vapor in the tank to liquid A) Actual Equivalent amount of liquid of all the vapor in the tank Equivalent amount of liquid of vapor removed if tank is evacuated to desired evacuation pressure or until VE = 0, whichever comes first C) Claimable Equivalent amount of liquid of vapor removed if tank is evacuated until VE = 0	T2	Discharge temperature of gas, degrees Fahrenheit
pressure or where VE = 0, whichever comes first) Acfm (initial) Volume flow rate at beginning of vapor recovery phase (inlet pressure = vapor pressure flow final) Volume flow rate at end of vapor recovery phase (inlet pressure = desired evacuation pressure or where VE = 0, whichever comes first) Z (initial) Initial compressibility Bhp Highest brake horsepower that occurs during vapor recovery P1 at VE = 0 Evacuation suction pressure when VE has fallen to 0 due to increase in compression P1 at max bhp Inlet pressure to compressor at the highest horsepower condition Time Time to complete evacuation of tank to desired evacuation pressure or to evacuate ta point where VE falls to 0, whichever comes first-in minutes Equivalent Liquid The amount of liquid that would be formed by converting vapor in the tank to liquid A) Actual Equivalent amount of liquid of all the vapor in the tank B) Recovered evacuation Equivalent amount of liquid of vapor removed if tank is evacuated to desired pressure or until VE = 0, whichever comes first C) Claimable Equivalent amount of liquid of vapor removed if tank is evacuated until VE = 0	VE (initial)	Volumetric efficiency at beginning of vapor recovery phase (inlet pressure = vapor pressure)
Acfm (final) Volume flow rate at end of vapor recovery phase (inlet pressure = desired evacuation pressure or where VE = 0, whichever comes first) Z (initial) Initial compressibility Z (final) Final compressibility Bhp Highest brake horsepower that occurs during vapor recovery P1 at VE = 0 Evacuation suction pressure when VE has fallen to 0 due to increase in compression P1 at max bhp Inlet pressure to compressor at the highest horsepower condition Time Time to complete evacuation of tank to desired evacuation pressure or to evacuate ta point where VE falls to 0, whichever comes first-in minutes Equivalent Liquid The amount of liquid that would be formed by converting vapor in the tank to liquid A) Actual Equivalent amount of liquid of vapor removed if tank is evacuated to desired evacuation pressure or until VE = 0, whichever comes first C) Claimable Equivalent amount of liquid of vapor removed if tank is evacuated until VE = 0	VE (final)	Volumetric efficiency at end of vapor recovery phase (inlet pressure = desired evacuation pressure or where VE = 0, whichever comes first)
pressure or where VE = 0, whichever comes first) Z (initial) Initial compressibility Z (final) Final compressibility Bhp Highest brake horsepower that occurs during vapor recovery P1 at VE = 0 Evacuation suction pressure when VE has fallen to 0 due to increase in compression P1 at max bhp Inlet pressure to compressor at the highest horsepower condition Time Time to complete evacuation of tank to desired evacuation pressure or to evacuate ta point where VE falls to 0, whichever comes first-in minutes Equivalent Liquid The amount of liquid that would be formed by converting vapor in the tank to liquid A) Actual Equivalent amount of liquid of all the vapor in the tank B) Recovered evacuation Equivalent amount of liquid of vapor removed if tank is evacuated to desired pressure or until VE = 0, whichever comes first C) Claimable Equivalent amount of liquid of vapor removed if tank is evacuated until VE = 0	Acfm (initial)	Volume flow rate at beginning of vapor recovery phase (inlet pressure = vapor pressure)
Z (final) Final compressibility Bhp Highest brake horsepower that occurs during vapor recovery P1 at VE = 0 Evacuation suction pressure when VE has fallen to 0 due to increase in compression P1 at max bhp Inlet pressure to compressor at the highest horsepower condition Time Time to complete evacuation of tank to desired evacuation pressure or to evacuate ta point where VE falls to 0, whichever comes first-in minutes Equivalent Liquid The amount of liquid that would be formed by converting vapor in the tank to liquid A) Actual Equivalent amount of liquid of all the vapor in the tank Equivalent amount of liquid of vapor removed if tank is evacuated to desired pressure or until VE = 0, whichever comes first C) Claimable Equivalent amount of liquid of vapor removed if tank is evacuated until VE = 0	Acfm (final)	
Bhp Highest brake horsepower that occurs during vapor recovery P1 at VE = 0 Evacuation suction pressure when VE has fallen to 0 due to increase in compression P1 at max bhp Inlet pressure to compressor at the highest horsepower condition Time Time to complete evacuation of tank to desired evacuation pressure or to evacuate ta point where VE falls to 0, whichever comes first-in minutes Equivalent Liquid The amount of liquid that would be formed by converting vapor in the tank to liquid A) Actual Equivalent amount of liquid of all the vapor in the tank B) Recovered evacuation Equivalent amount of liquid of vapor removed if tank is evacuated to desired pressure or until VE = 0, whichever comes first C) Claimable Equivalent amount of liquid of vapor removed if tank is evacuated until VE = 0	Z (initial)	Initial compressibility
P1 at VE = 0 P1 at max bhp Inlet pressure to compressor at the highest horsepower condition Time Time to complete evacuation of tank to desired evacuation pressure or to evacuate ta point where VE falls to 0, whichever comes first-in minutes Equivalent Liquid A) Actual Equivalent amount of liquid that would be formed by converting vapor in the tank to liquid Equivalent amount of liquid of all the vapor in the tank Equivalent amount of liquid of vapor removed if tank is evacuated to desired pressure or until VE = 0, whichever comes first C) Claimable Evacuation suction pressure when VE has fallen to 0 due to increase in compression O due to increase in compression O due to increase in compression Inlet pressure to compressor at the highest horsepower condition Time Time to complete evacuation of tank to desired evacuated by converting vapor in the tank to liquid A) Actual Equivalent amount of liquid of vapor removed if tank is evacuated to desired pressure or until VE = 0, whichever comes first C) Claimable Equivalent amount of liquid of vapor removed if tank is evacuated until VE = 0	Z (final)	Final compressibility
P1 at max bhp Inlet pressure to compressor at the highest horsepower condition Time Time to complete evacuation of tank to desired evacuation pressure or to evacuate ta point where VE falls to 0, whichever comes first-in minutes Equivalent Liquid The amount of liquid that would be formed by converting vapor in the tank to liquid A) Actual Equivalent amount of liquid of all the vapor in the tank Equivalent amount of liquid of vapor removed if tank is evacuated to desired pressure or until VE = 0, whichever comes first C) Claimable Equivalent amount of liquid of vapor removed if tank is evacuated until VE = 0	Bhp	Highest brake horsepower that occurs during vapor recovery
Time to complete evacuation of tank to desired evacuation pressure or to evacuate ta point where VE falls to 0, whichever comes first-in minutes Equivalent Liquid The amount of liquid that would be formed by converting vapor in the tank to liquid A) Actual Equivalent amount of liquid of all the vapor in the tank B) Recovered Equivalent amount of liquid of vapor removed if tank is evacuated to desired pressure or until VE = 0, whichever comes first C) Claimable Equivalent amount of liquid of vapor removed if tank is evacuated until VE = 0	P1 at VE = 0	Evacuation suction pressure when VE has fallen to 0 due to increase in compression ratio.
point where VE falls to 0, whichever comes first-in minutes Equivalent Liquid The amount of liquid that would be formed by converting vapor in the tank to liquid A) Actual Equivalent amount of liquid of all the vapor in the tank B) Recovered evacuation Equivalent amount of liquid of vapor removed if tank is evacuated to desired pressure or until VE = 0, whichever comes first C) Claimable Equivalent amount of liquid of vapor removed if tank is evacuated until VE = 0	P1 at max bhp	Inlet pressure to compressor at the highest horsepower condition
A) Actual Equivalent amount of liquid of all the vapor in the tank B) Recovered evacuation Equivalent amount of liquid of vapor removed if tank is evacuated to desired pressure or until VE = 0, whichever comes first C) Claimable Equivalent amount of liquid of vapor removed if tank is evacuated until VE = 0	Time	Time to complete evacuation of tank to desired evacuation pressure or to evacuate tank to point where VE falls to 0, whichever comes first-in minutes
B) Recovered evacuation Equivalent amount of liquid of vapor removed if tank is evacuated to desired pressure or until VE = 0, whichever comes first C) Claimable Equivalent amount of liquid of vapor removed if tank is evacuated until VE = 0	Equivalent Liquid	The amount of liquid that would be formed by converting vapor in the tank to liquid
evacuation pressure or until VE = 0, whichever comes first C) Claimable Equivalent amount of liquid of vapor removed if tank is evacuated until VE = 0	A) Actual	Equivalent amount of liquid of all the vapor in the tank
	l '	
Total Time Sum of time for liquid transfer phase and vapor recovery phase in hours	C) Claimable	Equivalent amount of liquid of vapor removed if tank is evacuated until VE = 0
Julia Time Sum of time for figure transfer phase and vapor recovery phase in mours	Total Time	Sum of time for liquid transfer phase and vapor recovery phase in hours

Liquefied Gas Transfer Compressor Worksheet

Model 691 Compressor on Propane

N = 1.13; RPM = 825; PD = 60.7; MAWP = 265 psia; Critical pressure = 619 psia; critical temperature = 666°R

Liquid Transfer Phase

T1	VP	P2	T2	CR	VE	Gpm	Acfm	Acfm	Bhp	Time	Lb/hour	Z	Z
°F)	(psia)	(psia)	(°F)		%		(in)	(out)		(min)	Liquid	(in)	(out)
0	38	68	32	1.8	85	216	51.8	28.9	12.3	137	55,229	0.92	0.89
10	46	76	38	1.7	87	238	52.7	31.9	13.1	124	60,864	0.91	0.88
20	55	85	45	1.5	88	258	53.4	34.5	13.9	115	65,938	0.90	0.87
30	66	96	52	1.5	89	278	54.0	37.1	14.8	107	70,841	0.89	0.86
40	78	108	59	1.4	90	294	54.4	39.3	15.6	101	75,048	0.88	0.85
50	92	122	67	1.3	90	309	54.8	41.3	16.6	96	78,903	0.86	0.83
60	107	137	75	1.3	91	322	55.1	43.0	17.5	92	82,154	0.85	0.82
70	124	154	83	1.2	91	333	55.3	44.6	18.5	89	85,064	0.83	0.80
80	144	174	92	1.2	91	344	55.5	46.0	19.6	86	87,748	0.81	0.79
90	165	195	101	1.2	92	353	55.7	47.1	20.7	84	89,966	0.80	0.77
00	189	219	110	1.2	92	360	55.8	48.2	21.9	82	91,969	0.78	0.75
10	215	245	119	1.1	92	367	55.9	49.1	23.2	81	93,687	0.76	0.73

Boil-Off Phase

	Heel vol	ume = 83	gallon liqu	uid or 0.25	5% of total	tank volur	me.	10 psi drop in	vapor recovery sy	stem		
T1	V.P.	P2	T2	CR	VE	bhp	acfm	Equiv. Vapor	Liquid Recovery	Time	Z	Z
(°F)	(psia)	(psia)	(°F)		%		(in)	Volume (FT1)	Rate (gpm)	(min)	(in)	(out)
0	38	48	13	1.3	92	9.4	55.8	955	5	17	0.92	0.91
10	46	56	21	1.2	92	10.0	56.0	797	6	14	0.91	0.91
20	55	65	29	1.2	93	10.5	56.2	673	7	12	0.90	0.89
30	66	76	38	1.2	93	11.2	56.4	564	8	10	0.89	0.88
40	78	88	47	1.1	93	11.9	56.5	480	10	8	0.88	0.87
50	92	102	56	1.1	93	12.7	56.6	408	11	7	0.86	0.85
60	107	117	65	1.1	93	13.5	56.7	352	13	6	0.85	0.84
70	124	134	75	1.1	93	14.4	56.7	304	15	5	0.83	0.82
80	144	154	84	1.1	93	15.4	56.8	261	18	5	0.81	0.81
90	165	175	94	1.1	94	16.5	56.8	227	21	4	0.80	0.79
100	189	199	103	1.1	94	17.6	56.8	197	24	3	0.78	0.77
110	215	225	113	1.0	94	18.9	56.8	171	27	3	0.76	0.75

Vapor Recovery Phase

																	1
			30 p	osia desi	red evad	cuation	pressu	re			10 p	sia drop ir	vapor	recover	y system		
T1	V.P.	P2	T2	VE (%)	VE (%)	acfm	acfm	Z in	Z in	bhp	P1@	P1@	Time	Equi	valent Liquid	(gallons)	Total Time
(°F)	(psia)	(psia)	(°F)	(initial)	(final)	(initial)	(final)	(initial)	(final)	(max)	VE = 0	Max Bhp	(min)	Actual	Recovered	Claimable	Hours
0	38	48	20	92	90	55	54	0.92	0.93	10.2	5	26	19	381	89	337	2.9
10	46	56	42	92	86	56	52	0.91	0.94	11.1	6	32	35	456	185	405	2.9
20	55	65	64	93	82	56	49	0.90	0.95	12.1	6	34	50	540	288	482	2.9
30	66	76	80	93	80	56	48	0.89	0.95	13.4	8	41	67	645	377	578	3.1
40	78	88	103	93	75	56	45	0.88	0.95	14.8	9	48	84	758	506	682	3.2
50	92	102	126	93	69	56	41	0.86	0.96	16.4	10	57	101	891	650	803	3.4
60	107	117	143	93	66	56	40	0.85	0.96	18.1	12	60	118	1,034	781	937	3.6
70	124	134	166	93	60	56	36	0.83	0.96	20.0	13	70	137	1,197	953	1,088	3.9
80	144	154	188	93	53	56	32	0.81	0.96	22.3	15	82	158	1,395	1,153	1,272	4.1
90	165	175	209	94	47	56	28	0.80	0.97	24.6	17	95	180	1,604	1,364	1,466	4.5
100	189	199	234	94	37	56	22	0.78	0.97	27.3	20	99	206	1,850	1,619	1,695	4.0
110	215	225	256	94	29	56	17	0.76	0.97	30.2	23	114	237	2,123	1,894	1,948	5.3

Assumptions for calculations:

¹⁾ Pressure drops remain constant

 $^{2) \} Included \ flow \ based \ on \ is othermal \ compression$

³⁾ Bhp and temperature are based on adiabatic compression

⁴⁾ Compressibility effects are considered in calculations

⁵⁾ Heat transfer is sufficient to maintain constant tank temperature during boilout

Liquid Transfer Phase—Propane

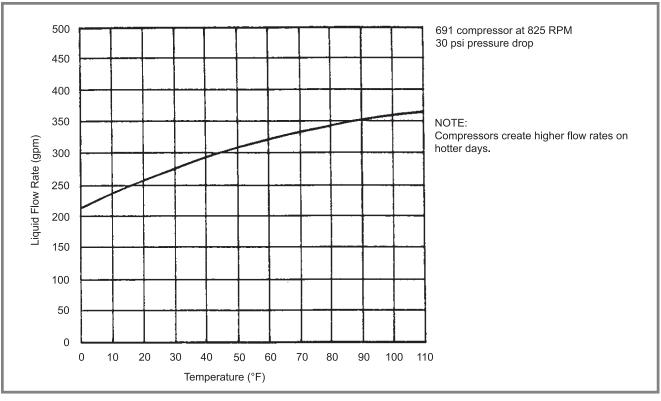


Figure 7

Boil-Out Phase—Propane

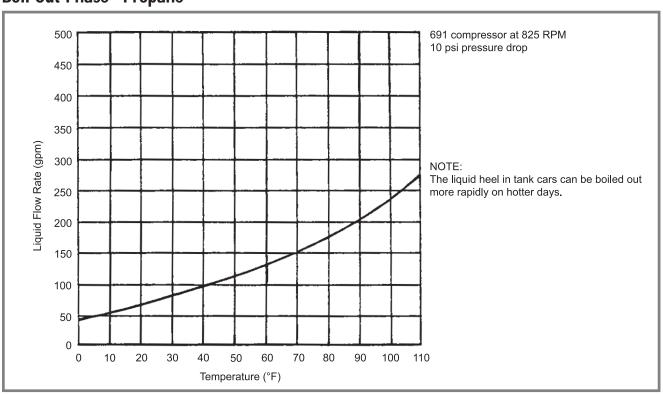


Figure 8

Vapor Recovery Phase—Propane

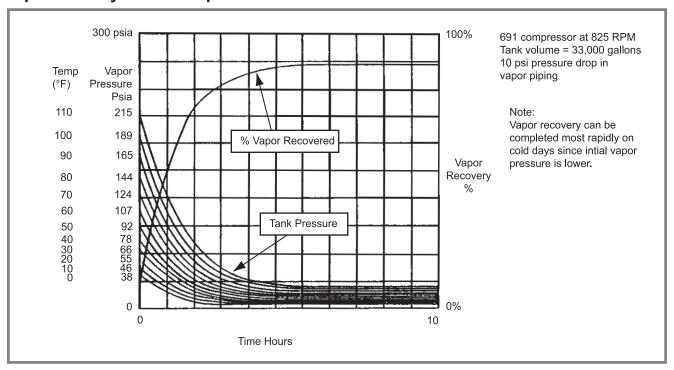


Figure 9

Vapor Recovery Phase—Propane

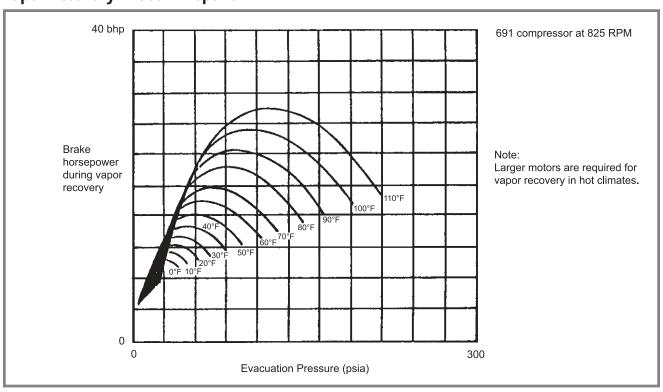


Figure 10

Butane Compressor Selection Table

								Driver Ho	orsepower			
							Liq	uid	Liqu	uid		
								sfer	Tran			
								<u> </u>	With			
							Resi		Resid			
					Driver Ch	eave Size					Dining	C:3
		5					Va		Vap		Piping	Size
	Capacity	Displacement	Compre			eter (inches)2	Reco		Reco			
Service	gpm ¹	cfm	Model	RPM	1,750 RPM	1,450 RPM	100°F	80°F	100°F	80°F	Vapor	Liquid
	13	4	91	400	A 3.0	A 3.6	3	3	3	3	3/4	1-1/4
Small	17	5	91	505	A 3.8	B 4.6	3	3	3	3	3/4	1-1/4
bulk	20	6	91	590	B 4.6	B 5.6	3	3	3	3	1	1-1/4
plants	24	7	91	695	B 5.4	B 6.6	5	5	5	5	1	1-1/2
	23	7	290, 291	345	A 3.0	A 3.6	2	2	2	2	1	1-1/2
	27	8	91	795	B 6.2	B 7.4	5	5	5	5	1	1-1/2
	26	8	290, 291	390	A 3.4	B 4.0	2	2	2	2	1	1-1/2
	30	9	290, 291	435	A 3.8	B 4.6	3	3	3	3	1	1-1/2
	33	10	290, 291	490	B 4.4	B 5.2	3	3	3	3	1	2
Unloading	36	11	290, 291	535	B 4.8	B 5.8	3	3	3	3	1	2
single tank	39	12	290, 291	580	B 5.2	B 6.2	5	3	5	3	1	2
car or	42	13	290, 291	625	B 5.6	B 6.6	5	5	5	5	1-1/4	2
transport	47	14	290, 291	695	B 6.2	B 7.4	5	5	5	5	1-1/4	2
an opon	50	15	290, 291	735	B 6.6	B 8.0	5	5	5	5	1-1/4	2-1/2
	50	15	490, 491	345	A 3.0	A 3.6	5	5	5	5	1-1/4	2-1/2
	53	16	290, 291	780	B 7.0	B 8.6	7-1/2	5	7-1/2	5	1-1/4	2-1/2
	53	16	490, 491	370	A 3.2	A 3.8	5	5	5	5	1-1/4	2-1/2
						-		5			+	
	56	17	490, 491	390	A 3.4	B 4.0	5		5	5	1-1/4	3
	60	18	490, 491	415	A 3.6	B 4.4	5	5	5	5	1-1/4	3
	63	19	490, 491	435	A 3.8	B 4.6	5	5	5	5	1-1/4	3
	65	20	490, 491	445	B 4.0	B 4.8	5	5	5	5	1-1/4	3
	68	21	490, 491	470	B 4.2	B 5.0	5	5	5	5	1-1/4	3
Unloading	71	22	490, 491	490	B 4.4	B 5.2	7-1/2	5	7-1/2	5	1-1/4	3
two or	75	23	490, 491	515	B 4.6	B 5.6	7-1/2	5	7-1/2	5	1-1/4	3
more tank	77	24	490, 491	535	B 4.8	B 5.8	7-1/2	7-1/2	7-1/2	7-1/2	1-1/4	3
cars at	81	25	490, 491	560	B 5.0	B 6.0	7-1/2	7-1/2	7-1/2	7-1/2	1-1/4	3
one time	84	26	490, 491	580	B 5.2	B 6.2	7-1/2	7-1/2	7-1/2	7-1/2	1-1/4	3
or large	87	27	490, 491	605	B 5.4	B 6.4	7-1/2	7-1/2	7-1/2	7-1/2	1-1/4	3
transport	91	28	490, 491	625	B 5.6	B 6.6	7-1/2	7-1/2	7-1/2	7-1/2	1-1/2	3
with excess	94	29	490, 491	650	B 5.8	B 7.0	10	7-1/2	10	7-1/2	1-1/2	3
flow valves	97	30	490, 491	670	B 6.0		10	7-1/2	10	7-1/2	1-1/2	3
of adequate	94	30	690, 691	400	B 4.4	B 5.2	7-1/2	7-1/2	7-1/2	7-1/2	1-1/2	3
capacity	100	31	490, 491	695	B 6.2	B 7.4	10	7-1/2	10	7-1/2	1-1/2	3
	98	31	690, 691	420	B 4.6	B 5.6	10	7-1/2	10	7-1/2	1-1/2	3
	107	32	490, 491	740	B 6.6	B 8.0	10	10	10	10	1-1/2	3
	103	32	690, 691	440	B 4.8	B 5.8	10	7-1/2	10	7-1/2	1-1/2	3
	110	33	490, 491	760	B 6.8	B 8.0	10	10	10	10	1-1/2	3
	113	34	490, 491	780	B 7.0	B 8.6	10	10	10	10	1-1/2	3
	107	34	690, 691	455	B 5.0	B 6.0	10	10	10	10	1-1/2	3
	111	35	690, 691	475	B 5.2	B 6.2	10	10	10	10	1-1/2	3
	119	36	490, 491	825	B 7.4	B 8.6	15	10	15	10	1-1/2	3
	116	36	690, 691	495	B 5.4	A 6.4	10	10	10	10	1-1/2	3
	120	38	690, 691	510	B 5.6	B 6.8	10	10	10	10	1-1/2	4
Unloading	124	39	690, 691	530	B 5.8	B 7.0	10	10	10	10	1-1/2	4
large	129	41	690, 691	550	B 6.0	A 7.0	10	10	10	10	1-1/2	4
tank cars,	133	42	690, 691	565	B 6.2	B 7.4	10	10	10	10	2	4
multiple	137	43	690, 691	585	B 6.4	A 7.4	10	10	10	10	2	4
vessels,	142	45	690, 691	605	B 6.6	B 8.0	15	10	15	10	2	4
barges or	145	46	690, 691	620	B 6.8	5.2	15	10	15	10	2	4
terminals	150	47	690, 691	640	B 7.0	A 8.2	15	10	15	10	2	4
	158	48	690, 691	675	B 7.4	B 8.6	15	15	15	15	2	4
	171	54	690, 691	730	B 8.0	B 9.4	15	15	15	15	2	4
	184	58	690, 691	785	B 8.6	5 5.4	15	15	15	15	2	4
	1			ı		A 10.6		l		l		
	193	60	690, 691	820	TB 9.0	A 10.6	15	15	15	15	2	4
	260	82.1	D891	580	5V 7.1	5V 8.5	20	20	20	20	3	6
	359	113.3	D891	800	5V 9.75	5V 11.8	25	25	25	25	3	6

¹The capacities shown are based on 70°F, but will vary dependingupon piping, fittings used, product being transferred and temperature. The factory can supply a detailed computer analysis if required.

²Driver sheaves: 91 (2 belts); 290, 291, 490, 491 (3 belts); 690, 691 (4 belts).

³The piping sizes shown are considered minimum. If the length exceeds 100 ft, use the next larger size.

NOTE: Please consult factory for compressors with higher flows.

LPG Compressors

Compressor Selection

Propane Compressor Selection Table

								Debarant	1			
l									lorsepowe			
l								quid		uid		
								nsfer	l	sfer		
								&	l	nout		
l							Res	idual	Resi	dual		
l					Driver Sh	eave Size	Va	por	Va	oor	Piping	Size ³
l	Capacity	Displacement	Compre	essor	Pitch Diame	eter (inches)2	Rec	overy	Reco	very		
Service	gpm ¹	cfm	Model	RPM	1,750 RPM		100°F	80°F	100°F	80°F	Vapor	Liquid
0011100	23	4	91	400	A 3.0	A 3.6	5	3	3	3	3/4	1-1/4
Small	29	5	91	505	A 3.8	B 4.6	5	5	5	5	3/4	1-1/4
bulk	34	6	91	590	B 4.6	B 5.6	5	5	5	5	1	1-1/4
plants	40	7	91	695	B 5.4	B 6.6	5	5	5	5	1	1-1/4
piarits	39	7	290, 291	345	A 3.0	A 3.6	3	3	3	3	1	1-1/2
	45	8	91	795	B 6.2	B 7.4	7-1/2	7-1/2	7-1/2	7-1/2	1	1-1/2
	44	8	290, 291	390	A 3.4	B 4.0	5	3	3	3	1	1-1/2
	50	9	290, 291	435	A 3.8	B 4.6	5	5	3	3	1	1-1/2
ı	56	10	290, 291	490	B 4.4	B 5.2	5	5	5	5	1	2
Unloading	61	11	290, 291	535	B 4.4 B 4.8	B 5.2 B 5.8	5	5	5	5	1	2
				1			7-1/2	5	_			
single tank	66 71	12 13	290, 291	580	B 5.2	B 6.2	7-1/2	5	5 7-1/2	5 5	1-1/4	2
car or	71	13	290, 291	625 695	B 5.6 B 6.2	B 6.6 B 7.4	7-1/2	5 7-1/2	7-1/2 7-1/2	5 7-1/2	1-1/4	2 2
transport	-		290, 291									
l	84	15	290, 291	735	B 6.6	B 8.0	10	7-1/2	10	7-1/2	1-1/4	2-1/2
	84	15	490, 491	345	A 3.0	A 3.6	7-1/2	7-1/2	5	5	1-1/4	2-1/2
1	89	16	290, 291	780	B 7.0	B 8.6	10	10	10	10	1-1/4	2-1/2
	89	16	490, 491	370	A 3.2	A 3.8	7-1/2	7-1/2	7-1/2	5	1-1/4	2-1/2
	95	17	490, 491	390	A 3.4	B 4.0	7-1/2	7-1/2	7-1/2	7-1/2	1-1/4	3
l	101	18	490, 491	415	A 3.6	B 4.4	10	7-1/2	7-1/2	7-1/2	1-1/4	3
	106	19	490, 491	435	A 3.8	B 4.6	10	7-1/2	7-1/2	7-1/2	1-1/4	3
	108	20	490, 491	445	B 4.0	B 4.8	10	7-1/2	7-1/2	7-1/2	1-1/4	3
l	114	21	490, 491	470	B 4.2	B 5.0	10	7-1/2	7-1/2	7-1/2	1-1/4	3
Unloading	119	22	490, 491	490	B 4.4	B 5.2	10	10	7-1/2	7-1/2	1-1/4	3
two or	125	23	490, 491	515	B 4.6	B 5.6	10	10	10	7-1/2	1-1/4	3
more tank	130	24	490, 491	535	B 4.8	B 5.8	15	10	10	10	1-1/4	3
cars at	136	25	490, 491	560	B 5.0	B 6.0	15	10	10	10	1-1/4	3
one time	141	26	490, 491	580	B 5.2	B 6.2	15	10	10	10	1-1/4	3
or large	147	27	490, 491	605	B 5.4	B 6.4	15	10	15	10	1-1/4	3
transport	152	28	490, 491	625	B 5.6	B 6.6	15	15	15	15	1-1/2	3
with excess	158	29	490, 491	650	B 5.8	B 7.0	15	15	15	15	1-1/2	3
flow valves	163	30	490, 491	670	B 6.0		15	15	15	15	1-1/2	3
of adequate	163	30	690, 691	400	B 4.4	B 5.2	15	15	10	10	1-1/2	3
capacity	168	31	490, 491	695	B 6.2	B 7.4	15	15	15	15	1-1/2	3
	171	31	690, 691	420	B 4.6	B 5.6	15	15	10	10	1-1/2	3
l	179	32	490, 491	740	B 6.6	B 8.0	15	15	15	15	1-1/2	3
l	178	32	690, 691	440	B 4.8	B 5.8	15	15	10	10	1-1/2	3
l	186	34	690, 691	455	B 5.0	B 6.0	15	15	15	10	1-1/2	3
l	193	35	690, 691	475	B 5.2	B 6.2	15	15	15	10	1-1/2	3
l	200	36	690, 691	495	B 5.4	B 6.4	15	15	15	15	1-1/2	3
	208	38	690, 691	510	B 5.6	B 6.8	20	15	15	15	1-1/2	4
l	215	39	690, 691	530	B 5.8	B 7.0	20	15	15	15	1-1/2	4
l	223	41	690, 691	550	B 6.0	A 7.0	20	15	15	15	1-1/2	4
l	230	42	690, 691	565	B 6.2	B 7.4	20	15	15	15	2	4
Unloading	237	43	690, 691	585	B 6.4	A 7.4	20	15	15	15	2	4
large	245	45	690, 691	605	B 6.6	B 8.0	20	15	15	15	2	4
tank cars,	252	46	690, 691	620	B 6.8	2 3.0	20	20	15	15	2	4
multiple	260	47	690, 691	640	B 7.0	A 8.2	20	20	20	15	2	4
vessels.	275	48	690, 691	675	B 7.4	B 8.6	25	20	20	20	2	4
barges or	297	54	690, 691	730	B 8.0	B 9.4	25	20	20	20	2	4
terminals	319	58	690, 691	785	B 8.6	5 5.4	25	20	25	20	2	4
Cililiais	334	60	690, 691	820	TB 9.0	A 10.6	30	25	25	20	2	4
I	452	82	D891	580	5V 7.1	5V 8.5	30	30	30	30	3	6
l	623	113	D891	800	5V 9.75	5V 0.3	55	40	40	30	3	6
	023	113	ופטםו	000	J V 9.75	3 V 11.0		40	40	30	<u> </u>	

¹The capacities shown are based on 70°F, but will vary depending upon piping, fittings used, product being transferred and temperature. The factory can supply a detailed computer analysis if required.

NOTE: Please consult factory for compressors with higher flows.

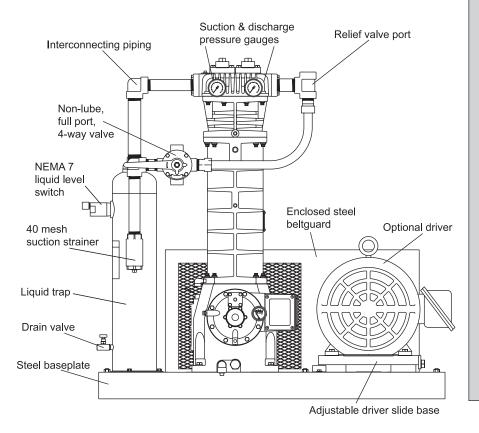
²Driver sheaves: 91 (2 belts); 290, 291, 490, 491 (3 belts); 690, 691 (4 belts).

³The piping sizes shown are considered minimum. If the length exceeds 100 ft, use the next larger size.

Ammonia Compressor Selection Table

								Driver H	lorsepowe	r		
							Lic	quid	Liq			
								nsfer		nsfer		
								&	1	nout		
								∝ sidual				
					D : 01	٥.				idual	5	O: 2
	_		_		Driver Sh			por	Val		Piping	Sizes
	Capacity	Displacment	Compre			eter (inches)2		overy	Reco			
Service	gpm¹	cfm	Model	RPM	1,750 RPM		100°F	80°F	100°F	80°F	Vapor	Liquid
	23	4	91	400	A 3.0	A 3.6	5	3	3	3	3/4	1-1/4
Small	29	5	91	505	A 3.8	B 4.6	5	5	5	3	3/4	1-1/4
bulk	34	6	91	590	B 4.6	B 5.6	5	5	5	5	1	1-1/4
plants	40	7	91	695	B 5.4	B 6.6	5	5	5	5	1	1-1/2
	43	7	290, 291	345	A 3.0	A 3.6	5	3	3	3	1	1-1/2
	46	8	91	795	B 6.2	B 7.4	7-1/2	5	5	5	1	1-1/2
	45	8	290, 291	390	A 3.4	B 4.0	5	3	3	3	1	1-1/2
	50	9	290, 291	435	A 3.8	B 4.6	5	5	3	3	1	1-1/2
1	56	10	290, 291	490	B 4.4	B 5.2	5	5	5	3	1	2
Unloading	62	11	290, 291	535	B 4.8	B 5.8	7-1/2	5	5	5	1	2
single tank	67	12	290, 291	580	B 5.2	B 6.2	7-1/2	5	5	5	1	2
car or	72	13	290, 291	625	B 5.6	B 6.6	7-1/2	5	5	5	1-1/4	2
transport	80	14	290, 291	695	B 6.2	B 7.4	7-1/2	7-1/2	7-1/2	5	1-1/4	2
	85	15	290, 291	735	B 6.6	B 8.0	10	7-1/2	7-1/2	7-1/2	1-1/4	2-1/2
	85	15	490, 491	345	A 3.0	A 3.6	7-1/2	7-1/2	5	5	1-1/4	2-1/2
	90	16	290, 291	780	B 7.0	B 8.6	10	7-1/2	7-1/2	7-1/2	1-1/4	2-1/2
	90	16	490, 491	370	A 3.2	A 3.8	10	7-1/2	5	5	1-1/4	2-1/2
	96	17	490, 491	390	A 3.4	B 4.0	10	7-1/2	5	_ 5	1-1/4	3
	102	18	490, 491	415	A 3.6	B 4.4	10	7-1/2	7-1/2	7-1/2	1-1/4	3
	107	19	490, 491	435	A 3.8	B 4.6	10	7-1/2	7-1/2	7-1/2	1-1/4	3
	110	20	490, 491	445	B 4.0	B 4.8	10	7-1/2	7-1/2	7-1/2	1-1/4	3
1	115	21	490, 491	470	B 4.2	B 5.0	10	7-1/2	7-1/2	7-1/2	1-1/4	3
Unloading	120	22	490, 491	490	B 4.4	B 5.2	15	10	7-1/2	7-1/2	1-1/4	3
two or	126	23	490, 491	515	B 4.6	B 5.6	15	10	7-1/2	7-1/2	1-1/4	3
more tank	131	24 25	490, 491	535	B 4.8 B 5.0	B 5.8	15	10	10	7-1/2	1-1/4 1-1/4	3
cars at	138		490, 491	560		B 6.0	15	10 10	10	7-1/2	1-1/4	3
one time or large	142 148	26 27	490, 491 490, 491	580 605	B 5.2 B 5.4	B 6.2 B 6.4	15 15	10	10 10	7-1/2 10	1-1/4	3
	153	28	490, 491	625	B 5.4	B 6.6	15	10	10	10	1-1/4	3
transport with excess	160	29	490, 491	650	B 5.8	B 7.0	15	15	10	10	1-1/2	3
flow valves	165	30	490, 491	670	B 6.0	D 7.0	15	15	15	10	1-1/2	3
of adequate	165	30	690, 691	400	B 4.4	B 5.2	15	15	10	10	1-1/2	3
capacity	170	31	490, 491	695	B 6.2	B 7.4	15	15	15	10	1-1/2	3
Jupating	173	31	690, 691	420	B 4.6	B 5.6	15	15	10	10	1-1/2	3
	181	32	490, 491	740	B 6.6	B 8.0	15	15	15	15	1-1/2	3
	180	32	690, 691	440	B 4.8	B 5.8	15	15	10	10	1-1/2	3
	188	34	690, 691	455	B 5.0	B 6.0	20	15	10	10	1-1/2	3
	195	35	690, 691	475	B 5.2	B 6.2	20	15	10	10	1-1/2	3
	203	36	690, 691	495	B 5.4	B 6.4	20	15	15	10	1-1/2	3
	211	38	690, 691	510	B 5.6	B 6.8	20	15	15	10	1-1/2	4
	218	39	690, 691	530	B 5.8	B 7.0	20	15	15	15	1-1/2	4
	226	41	690, 691	550	B 6.0	A 7.0	20	15	15	15	1-1/2	4
	233	42	690, 691	565	B 6.2	B 7.4	20	15	15	15	2	4
Unloading	240	43	690, 691	585	B 6.4	A 7.4	20	20	15	15	2	4
large	248	45	690, 691	605	B 6.6	B 8.0	20	20	15	15	2	4
tank cars,	255	45	690, 691	620	B 6.8		25	20	15	15	2	4
multiple	263	47	690, 691	640	B 7.0	A 8.2	25	20	15	15	2	4
vessels,	278	48	690, 691	675	B 7.4	B 8.6	25	20	15	15	2	4
barges or	301	54	690, 691	730	B 8.0	B 9.4	25	20	20	15	2	4
terminals		58	690, 691	785	B 8.6		30	25	20	20	2	4
1	323											
	338	60	690, 691	820	TB 9.0	A 10.6	30	25	20	20	2	4
_						A 10.6 5V 8.5 5V 11.8	30 40	25 30 40	20 30 40	30 30	2 3 3	6 6

¹The capacities shown are based on 70°F, but will vary depending upon piping, fittings used, product being transferred and temperature. The factory can supply a detailed computer analysis if required.


NOTE: Please consult factory for compressors with higher flows.

²Driver sheaves: 91 (2 belts); 290, 291, 490, 491 (3 belts); 690, 691 (4 belts).

³The piping sizes shown are considered minimum. If the length exceeds 100 ft, use the next larger size.

Compressor Mounting Selections

Standard 107 Items

Steel baseplate

V-Belt drive

Adjustable driver slide base

Enclosed steel beltguard

Suction and discharge pressure gauges

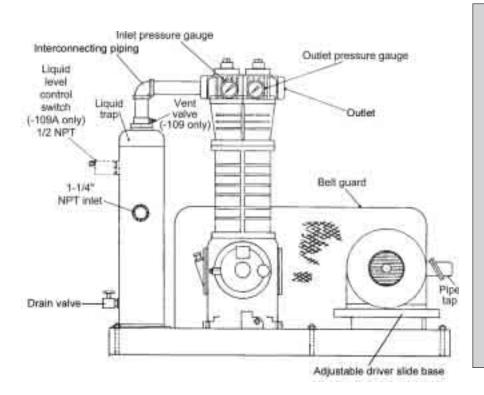
40 Micron strainer

Non-lube 4-way valve

Interconnecting piping

Liquid trap as specified below

107 Mounting


Mechanical liquid trap with ball float

107A Mounting

Automatic liquid trap with one NEMA 7 liquid level switch

107B Mounting

Automatic liquid trap with two NEMA 7 liquid level switches

Standard 109 Items

Steel baseplate

V-Belt drive

Adjustable driver slide base

Enclosed steel beltguard

Suction and discharge pressure gauges

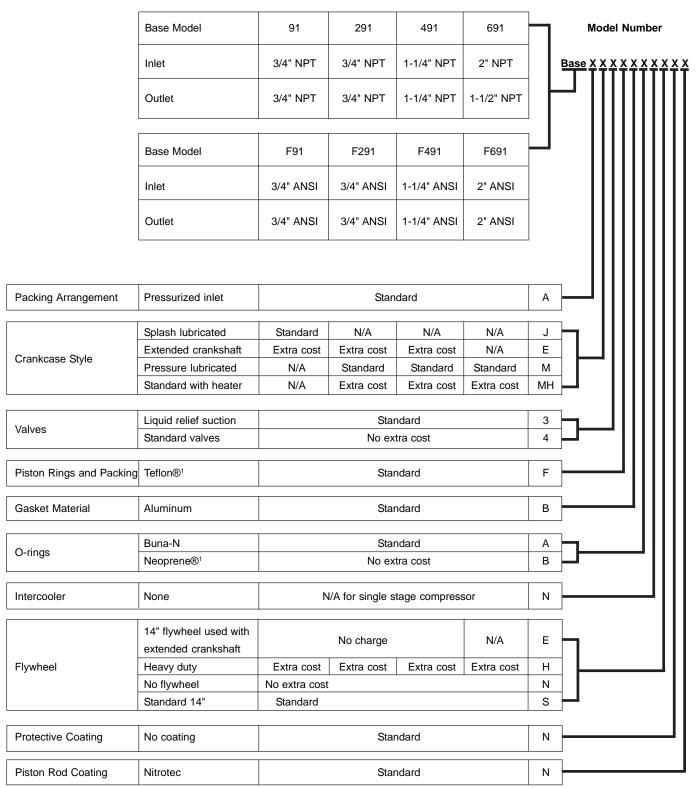
Interconnecting piping

Liquid trap as specified below

109 Mounting

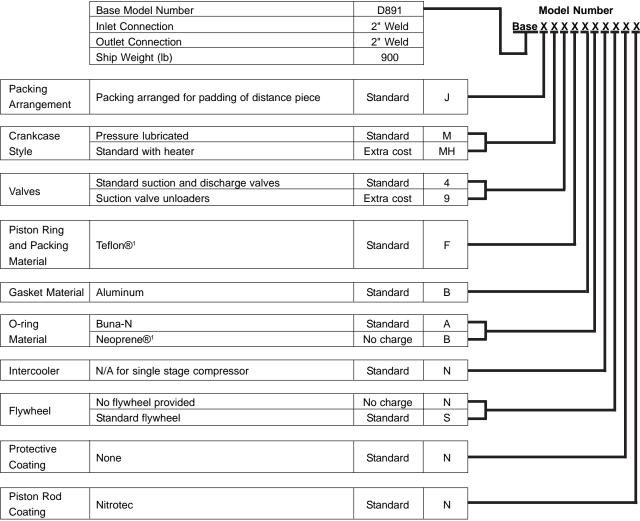
Mechanical liquid trap with ball float

109A Mounting


Automatic liquid trap with one NEMA 7 liquid level switch

109B Mounting

Automatic liquid trap with two NEMA 7 liquid level switches


Vertical Single-Acting Model Number Identification Code

¹Teflon® and Neoprene® are registered trademarks of the DuPont company.

See page 24 for mounting options.

Vertical Double-Acting Model Number Identification Code

¹ Teflon® and Neoprene® are registered trademarks of the DuPont company.

Mounting Options For Models 91–891

103 Mounting includes: Steel baseplate, adjustable driver slide base, V-belt drive and enclosed steel beltguard. Pressure gauges are mounted on the compressor.³

107 Mounting includes: Steel baseplate, mechanical liquid trap, non-lube 4-way valve, interconnecting piping, strainer, adjustable driver slide base, V-belt drive and enclosed steel beltguard. Pressure gauges are mounted on the compressor.³

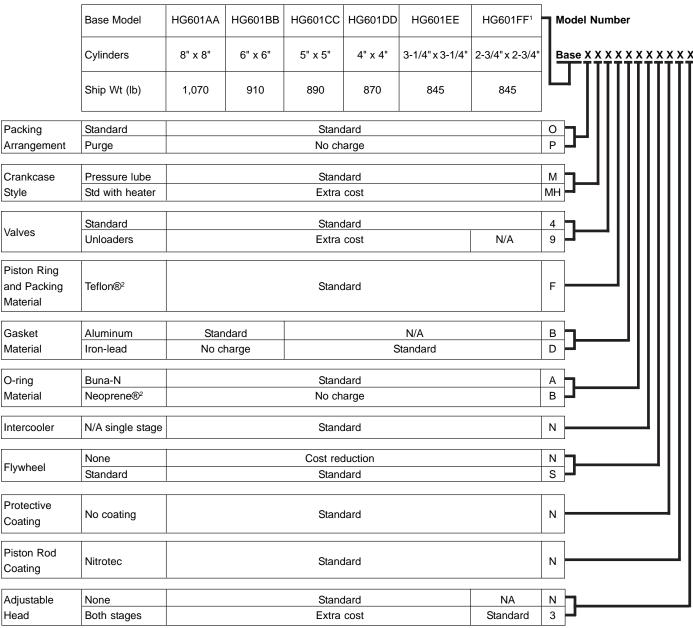
107A Mounting includes: All items on the 107 replacing the mechanical float in the liquid trap with a NEMA 7 liquid level switch.3

107B Mounting includes: All items on the 107 replacing the liquid trap with a larger ASME code liquid trap with 2 NEMA 7 liquid level switches set for alarm and shutdown.³

107TR Mounting includes: All items on the 107 set up to be used as a transport unit. Note that the compressor must have the optional 14" flywheel and extended crankshaft to use this mounting.^{2,3}

109 Mounting includes: Steel baseplate, mechanical liquid trap, interconnecting piping, adjustable driver slide base, V-belt drive and enclosed steel beltguard. Pressure gauges are mounted on the compressor.³

109A Mounting includes: All items on the 109 replacing the mechanical float in the liquid trap with a NEMA7 liquid level switch.3


109B Mounting includes: All items on the 109 replacing the liquid trap with a larger ASME code liquid trap with 2 NEMA 7 liquid level switches set for alarm and shutdown.³

109TR Mounting includes: All items on the 109 set up to be used as a transport unit. Note the compressor must have the optional 14" flywheel and extended crankshaft to use this mounting.^{2,3}

² Not suitable for 691, D891 or horizontal models.

³ Discharge relief valves are required but not included in these mountings.

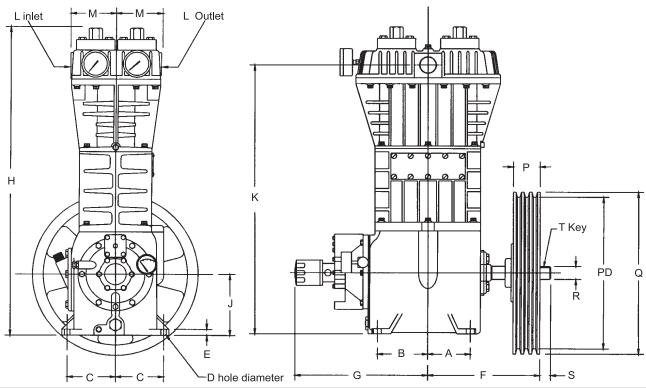
Horizontal Model Number Identification Code

¹This cylinder used for 3 and 4 stage compressors—consult factory for applications.

Mounting Options

103 Mounting includes: Structural steel skid, welded interconnecting piping, packing vent tank, ANSI flanged gas connections, high discharge temperature switches, low oil pressure switch, adjustable driver slide base, V-belt drive and enclosed steel belt guard. Pressure gauges are mounted on the compressor.³

107C Mounting includes: Structural steel skid, ASME Code automatic liquid trap with 2 NEMA 7 liquid level switches for alarm and shut down, liquid trap pipe away relief valve, flanged non-lube 4-way valve. Welded interconnecting piping, packing vent tank, ANSI flanged gas connections, high discharge temperature switches, discharge temperature gauge, low oil pressure switch, adjustable driver slide base, V-belt drive and enclosed steel belt guard. Pressure gauges are mounted on the compressor.³

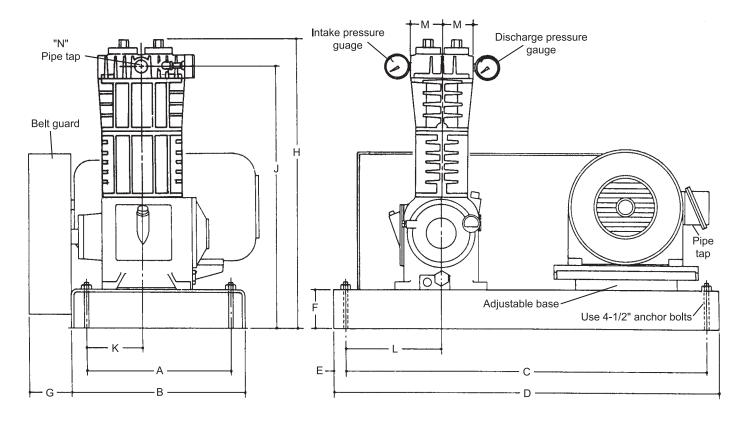

109C Mounting includes: Structural steel skid, ASME Code automatic liquid trap with 2 NEMA 7 liquid level switches for alarm and shut down, liquid trap pipe away relief valve. Welded interconnecting piping, packing vent tank, ANSI flanged gas connections, high discharge temperature switches, discharge temperature gauge, low oil pressure switch, adjustable driver slide base, V-belt drive and enclosed steel belt guard. Pressure gauges are mounted on the compressor.³

²Teflon® and Neoprene® are registered trademarks of the DuPont company.

³Discharge relief valves are required but not included in these mountings.

Models 91-691 Bare With Flywheel

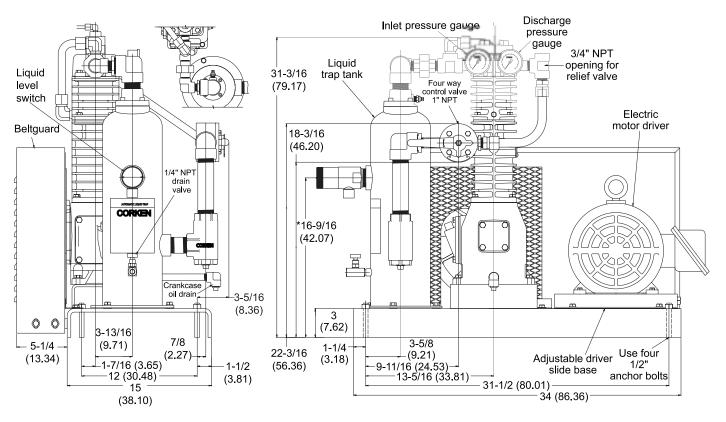
			Outlin	e Dimensio	ns—Inches	(Centimete	rs)			
Model	Α	В	С	D	E	F	G	Н	J	K
01	1-13/16	2-3/8	3-11/16	13/32	5/8	6-1/4	3-7/8	25-5/16	5	22-11/16
91	(4.6)	(6.0)	(9.4)	(1.03)	(1.59)	(15.9)	(9.8)	(64.3)	(12.7)	(57.6)
201	3-3/8	4-1/8	3-11/16	13/32	5/8	9-13/16	12	25-13/16	5-3/8	23-3/8
291	(8.6)	(10.5)	(9.4)	(1.11)	(1.59)	(24.9)	(30.4)	(65.2)	(13.7)	(59.4)
404	4-1/8	5	4-11/16	1/2	11/16	10-11/16	13	29-11/16	5-7/8	26-3/16
491	(10.5)	(12.7)	(11.9)	(1.27)	(1.75)	(27.2)	(33.1)	(75.4)	(14.9)	(66.5)
601	4-3/4	5	5-3/8	9/16	1	14	14-3/8	39-1/8	8-1/4	35-1/8
691	(12.1)	(14.0)	(13.7)	(1.5)	(2.5)	(35.6)	(35.6)	(99.4)	(21.0)	(89.2)


								"PD" F	- Iywheel F	Pitch Dia	meter
Model	L	М	Р	Q	R	S	Т	A-belt	Groove	B-belt	Groove
91	3/4	2-3/8	3	14	1-1/8	1-1/4	1/4	13.2	2	13.6	2
31	NPT	(6.0)	(7.6)	(35.6)	(2.8)	(3.2)	(0.63)	(33.5)		(34.5)	
	3/4	2-11/16	3	16	1-1/4	1-1/4	1/4	15.2	3	15.6	3
291	NPT	(6.8)	(7.6)	(40.6)	(3.2)	(3.2)	(0.63)	(38.6)		(39.6)	
231				14¹				13.2 ¹	2	13.6¹	2
				(35.6)				(33.5)		(34.5)	
	1-1/4	3-15/16	3	16	1-3/8	1-1/4	5/16	15.2	3	15.6	3
491	NPT	(10.1)	(7.6)	(40.6)	(3.5)	(3.2)	(0.79)	(38.6)		(39.6)	
431				14¹				13.2 ¹	2	13.6 ¹	2
				(35.6)				(33.5)		(34.5)	
691	2 ²	6-3/8	3-13/16	19-1/2	2-1/8	_	1/2	_	_	19-1/8	4
091	NPT	(16.1)	(9.7)	(49.5)	(5.4)		(1.27)			(48.5)	

¹Optional flywheel

²Optional flanges: 1-1/4", 1-1/2" NPT, 1-1/4", 1-1/2" or 2" Weld

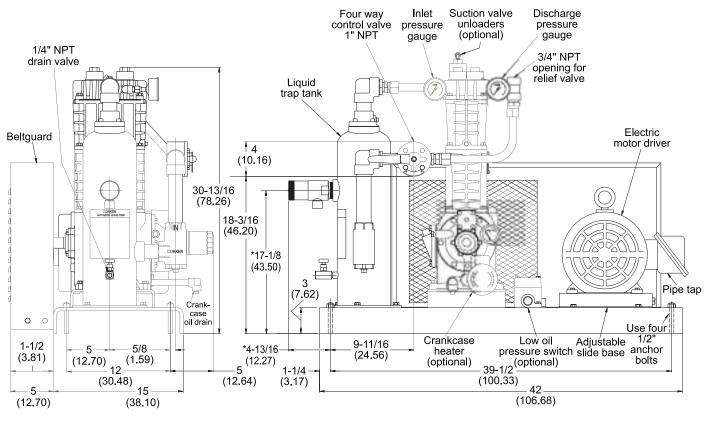
Models 91-691 With -103 Mounting



		Outline	Dimensions—I	nches (Centimet	ters)		
Model	Α	В	С	D	Е	F	G
04 402	12	15	27-1/2	30	1-1/4	3	??
91-103	(30.4)	(38.1)	(69.8)	(76.2)	(3.1)	(7.6)	(??)
291-103	12	15	31-1/2	34	1-1/4	3	5
291-103	(30.5)	(38.1)	(80.0)	(86.4)	(3.2)	(7.6)	(12.7)
491-103	15	18	37-1/2	40	1-1/4	4	5-1/4
491-103	(38.1)	(45.7)	(95.3)	(101.6)	(3.2)	(10.2)	(13.3)
601 102	17	20	39-1/2	42	1-1/4	4	5.5
691-103	(43.2)	(50.8)	(100.3)	(106.7)	(3.2)	(10.2)	(14.0)

Model	Н	J	K	L	М	N
01 102	28-11/16	26-3/8	4-15/16	7.75	2-11/16	3/4
91-103	(72.9)	(67.0)	(12.5)	(19.7)	(6.8)	NPT
201 102	28-22/32	26-6/16	4-15/16	7-3/4	2-11/16	3/4
291-103	(72.9)	(67.0)	(12.5)	(19.7)	(6.8)	NPT
404 402	33-11/16	30-3/16	5-3/4	10	3-15/16	3/4
491-103	(85.6)	(76.7)	(14.6)	(25.4)	(10.0)	NPT
691-103	43-1/8	39-1/8	8.25	9.25	6-3/8	2
091-103	(109.5)	(99.4)	(21.0)	(23.5)	(16.2)	NPT

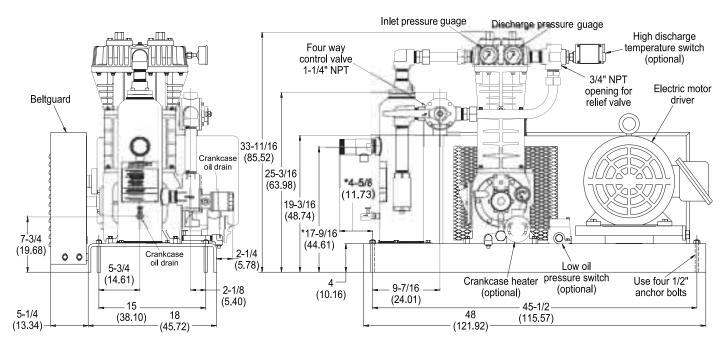
Model 91 With -107 Or -107A Mounting (model -107A shown below)



Inches (Centimeters)

^{*} Dimensions apply to -107A mounting only

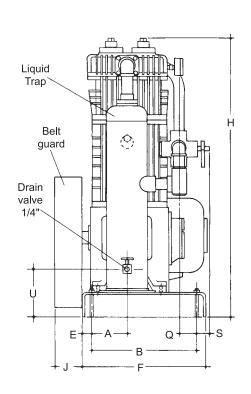
Model 291 With -107 Or -107A Mounting (model -107A shown below)

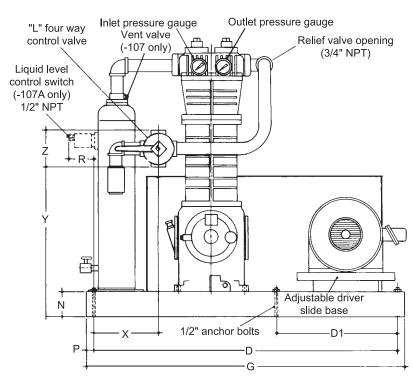


Inches (Centimeters)

^{*} Dimensions apply to -107A mounting only

Model 491 With -107 Or -107A Mounting (model -107A shown below)

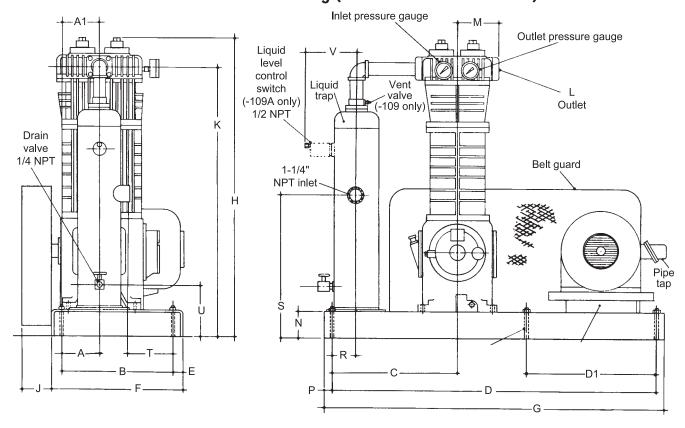



Inches (Centimeters)

^{*} Dimensions apply to -107A mounting only

Model 691 With -107 Or -107A Mounting (model -107A shown below)

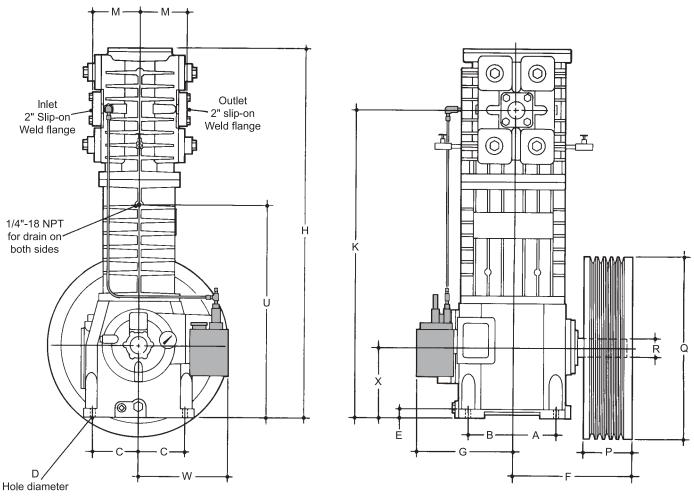
Inches (Centimeters)


		C	Outline Dim	ensions—	Inches (Ce	ntimeters)				
Model	Α	В	D	D1	Е	F	G	Н	J	L
691-107, -107A	8-1/4	17	49-1/2	19-3/4	1-1/2	20	52	43-1/4	5-1/2	1-1/4
091-107,-107A	(21.0)	(43.1)	(126)	(50.1)	(3.8)	(50.8)	(132)	(110)	(14)	NPT

Model		N	Р	Q	R	S	U	X	Υ
691-107, -107A	4	1-1/4	1/4	4-1/8	2-11/16*	7-3/4	29	24-1/4	6
691-107, -107A	(10.1)	(3.2)	(0.63)	(10.4)	(6.8)*	(19.6)	(73.0)	(61.0)	(15.0)

^{*} Dimensions apply to -107A mounting only

Models 91-691 With -109 Or -109A Mounting (model -109A shown below)



	Outline Dimensions—Inches (Centimeters)													
Model	Α	A1	В	С	D	D1	Е	F	G	Н	J			
01 100 1004	1-3/16	5-1/4	12	13-5/16	31-1/2	_	1-1/2	15	34	31-3/16	5-1/4			
91-109, -109A	(3.7)	(13.4)	(30.5)	(33.8)	(80.0)		(3.8)	(38.1)	(86.4)	(79.2)	(13.3)			
291-109, -109A	5	_	12	15-3/4	39-1/2	_	1-1/2	15	42	30-7/8	5-1/4			
291-109, -109A	(12.7)	_	(30.5)	(40.0)	(100.3)	_	(3.8)	(38.1)	(106.7)	(78.4)	(13.3)			
401 100 1004	5-3/4	_	15	18	45-1/2	_	1-1/2	18	48	33-3/4	5-1/4			
491-109, -109A	(14.6)	_	(38.1)	(45.7)	(115.6)	_	(3.8)	(45.7)	(121.9)	(85.7)	(13.3)			
601 100 1004	8-1/4	_	17	19-1/4	49-1/2	19-3/4	1-1/2	20	52	43-3/16	5-1/2			
691-109 -109A □	(30.0)	_	(43.2)	(48.8)	(125.7)	(50.1)	(3.8)	(50.8)	(132)	(109.6)	(14.0)			

Model	K	L	М	N	Р	R	S	Т	U	V
91-109, -109A	28-3/16	3/4	2-5/16	3	1-1/4	3-5/8	9-1/2	2-3/4	6-3/4	8
	(71.6)	NPT	(5.9)	(7.6)	(3.2)	(9.2)	(24.1)	(6.9)	(17.1)	(20.3)
201 100 1004	28-1/2	3/4	2-11/16	3	1-1/4	3-7/8	9-1/2	4-1/2	6-3/4	8
291-109, -109A	(72.4)	NPT	(6.8)	(7.6)	(3.2)	(9.9)	(24.1)	(11.4)	(17.1)	(20.3)
491-109, -109A	30-1/8	1-1/4	4	4	1-1/4	4	10-1/2	5.25	7-3/4	8
491-109, -109A	(76.5)	NPT	(10.2)	(10.2)	(3.2)	(10.2)	(26.7)	(13.3)	(19.7)	(20.3)
691-109, -109A	39-1/8	1-1/2	6-3/8	4	1-1/4	4-1/8	21-7/16	7-1/4	7-3/4	8
091-109, -109A	(99.3)	NPT	(16.1)	(10.2)	(3.2)	(10.4)	(54.4)	(18.4)	(19.7)	(20.3)

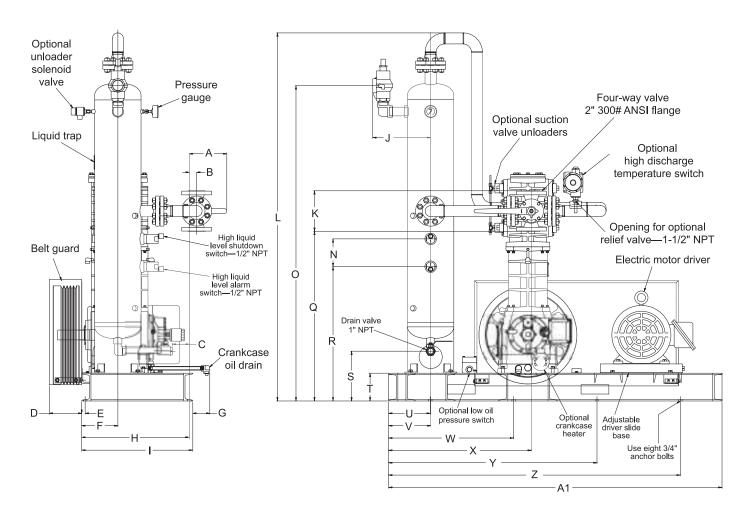
Model D891 Bare With Flywheel

Note: The lubricator marked in gray is optional.

	Outline Dimensions—Inches (Centimeters)												
Model A B C D E F G H													
D004	4-3/4	5-1/2	5-3/8	9/16	1	13-1/4	11-5/8	42-7/8					
D891	(12.0)	(13.9)	(13.6)	(1.4)	(2.5)	(33.6)	(29.5)	(108.9)					

Model	K	M	Р	Q	R	U	W	Х
D001	35-5/8	5-1/2	5-5/8	21.2	2-1/8	24-15/32	10-1/4	8-1/4
D891	(90.4)	(13.9)	(14.3)	(53.8)	(5.3)	(62.1)	(26.0)	(20.9)

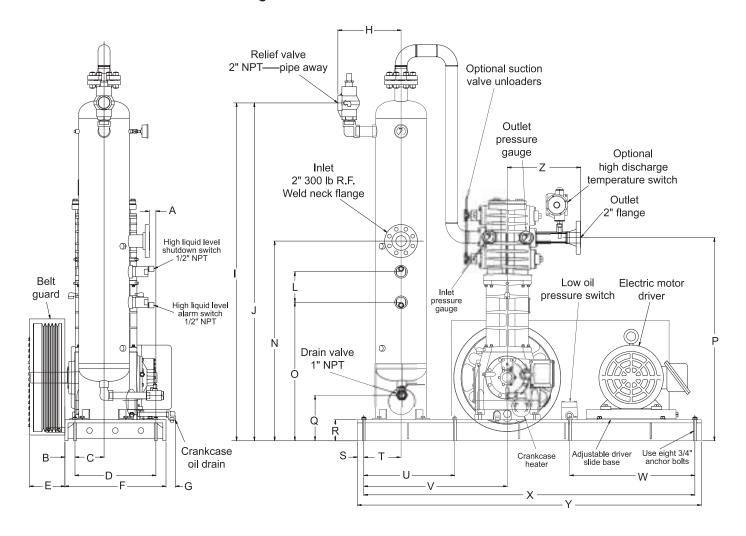
Model D891 With 103 Mounting



Outline Dimensions—Inches (Centimeters)												
Model	Α	В	С	D	E	F	G	Н				
D004 400	3/4	7	22-1/2	7	24	3-9/16	5-1/2	5-1/2				
D891-103	(1.9)	(17.8)	(57.2)	(17.8)	(61.0)	(9.1)	(13.9)	(13.9)				

Model	I	J	K	L	М	N	0	Р	Q
D001 102	49-1/4	41-5/8	26-1/8	6	4	18	10	36	56
D891-103	(125.0)	(105.8)	(66.4)	(15.2)	(10.2)	(45.7)	(25.4)	(91.4)	(142.2)

Model D891 With 107B Mounting


Outline Dimensions—Inches (Centimeters)											
Model A B C D E F G H I											
D004 407D	8-3/32	1-9/16	3-11/16	7	3/4	7-13/16	3-21/32	23-1/4	24		
D891-107B (20.6) (4.0) (9.4) (17.8) (1.9) (19.9) (9.3) (59.1) (61.0)											

Model	J	K	L	N	0	Q	R
D891-107B	12-1/2	8-3/4	79-7/16	6	68-1/16	36-5/8	29
D091-107B	(31.8)	(22.2)	(201.8)	(15.2)	(172.9)	(93.0)	(73.7)

Model	S	Т	U	V	W	X	Υ	Z	A1
D891-107B	10-3/4	6	9	9-1/16	27	30-13/16	45	63	72
D091-107B	(27.3)	(15.2)	(22.9)	(23.0)	(68.6)	(78.3)	(114.3)	(160.0)	(182.9)

Model D891 With 109B Mounting


	Outline Dimensions—Inches (Centimeters)											
Model A B C D E F G H I												
D004 400D	1-5/16	2	5-3/4	16	7	20	1-13/16	12-1/2	77-9/16			
D091-109B	D891-109B (3.3) (5.1) (14.6) (40.6) (17.8) (50.8) (4.7) (31.8) (197.1)											

Model	J	L	N	0	Р	Q	R
D901 100D	66-3/16	6	39-1/8	27-1/8	39-13/16	8-7/8	4-1/8
D891-109B	(168.1)	(15.2)	(99.4)	(68.9)	(101.1)	(22.5)	(10.5)

Model	S	Т	U	V	W	Х	Y	Z
D891-109B	1-1/4	7-3/8	18	28-3/8	24-3/4	65-1/2	68	14-1/2
D091-109B	(3.2)	(18.7)	(45.7)	(72.1)	(62.8)	(166.3)	(172.7)	(36.8)

Model HG601 Double Cylinder Bare Unit

Outline Dimensions—Inches (Centimeters)							
Cylinder Size	A (nozzle C _L)	B (flange height)	C (standard head)	C1 (adjustable head)	D (flange size)		
2.2/4	23-7/16	4-3/8	_	33-15/16	¹ 1-1/2" ANSI		
2-3/4	(59.5)	(11.1)	_	(86.2)	Flange		
2.4/4	22-1/2	5	29-5/16	32-1/8	2" Slip on		
3-1/4	(57.2)	(12.7)	(74.5)	(81.6)			
4	22-15/16	5-15/16	30-1/4	33-1/16	Oll Clin on		
4	(58.3)	(15.1)	(76.8)	(84.0)	2" Slip on		
-	23-3/8	7-5/16	31-3/16	34	2" Slip on		
5	(59.4)	(18.6)	(79.2)	(86.4)			
•	22-15/16	5-15/16	30-1/4	33-1/6	2" Slip on		
6	(58.3)	(15.1)	(76.8)	(84.0)			
0	23-5/8	7-1/4	32-1/8	34-15/16	011 01:		
8	(60.0)	(18.4)	(81.6)	(88.7)	3" Slip on		

¹1-1/2" 1,500 lb ASA companion flange not supplied

Solutions beyond products... CORKEN®

CORKEN, INC. • A Unit of IDEX Corporation
3805 N.W. 36th St., Oklahoma City, OK 73112
Phone (405) 946-5576 or 1 800 631-4929
Fax (405) 948-7343
Visit our website at http://www.corken.com
or e-mail us at info.corken@idexcorp.com